44 research outputs found

    Chotosan (Diaoteng San)-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8) involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chotosan (CTS, <it>Diaoteng San</it>), a Kampo medicine (<it>ie </it>Chinese medicine) formula, is reportedly effective in the treatment of patients with cerebral ischemic insults. This study aims to evaluate the therapeutic potential of CTS in cognitive deficits and investigates the effects and molecular mechanism(s) of CTS on learning and memory deficits and emotional abnormality in an animal aging model, namely 20-week-old senescence-accelerated prone mice (SAMP8), with and without a transient ischemic insult (T2VO).</p> <p>Methods</p> <p>Age-matched senescence-resistant inbred strain mice (SAMR1) were used as control. SAMP8 received T2VO (T2VO-SAMP8) or sham operation (sham-SAMP8) at day 0. These SAMP8 groups were administered CTS (750 mg/kg, p.o.) or water daily for three weeks from day 3.</p> <p>Results</p> <p>Compared with the control group, both sham-SAMP8 and T2VO-SAMP8 groups exhibited cognitive deficits in the object discrimination and water maze tests and emotional abnormality in the elevated plus maze test. T2VO significantly exacerbated spatial cognitive deficits of SAMP8 elucidated by the water maze test. CTS administration ameliorated the cognitive deficits and emotional abnormality of sham- and T2VO-SAMP8 groups. Western blotting and immunohistochemical studies revealed a marked decrease in the levels of phosphorylated forms of neuroplasticity-related proteins, N-methyl-D-aspartate receptor 1 (NMDAR1), Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII), cyclic AMP responsive element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the frontal cortices of sham-SAMP8 and T2VO-SAMP8. Moreover, these animal groups showed significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2 (VEGFR2), platelet-derived growth factor-A (PDGF-A) and PDGF receptor α (PDGFRα). CTS treatment reversed the expression levels of these factors down-regulated in the brains of sham- and T2VO-SAMP8.</p> <p>Conclusion</p> <p>Recovery of impaired neuroplasticity system and VEGF/PDGF systems may play a role in the ameliorative effects of CTS on cognitive dysfunction caused by aging and ischemic insult.</p

    Paeoniflorin ameliorates acquisition impairment of a simple operant discrimination performance caused by unilateral nucleus basalis magnocellularis lesion in rats

    Get PDF
    The effect of paeoniflorin on learning impairment of operant brightness discrimination performance was investigated in rats with unilateral nucleus basalis magnocellularis(NBM)lesion. The animals with unilateral NBM lesion exhibited a significant acquisition impairment of brightness discrimination task during the early phase of a training period(1-5days after starting the training session). When administered daily during a training period,paeoniflorin significantly improved the learning impairment of unilateral NBM-lesioned rats at 0.01 but not 0.1mg/kg/day(p.o.). Tacrine (0.3mg/kg/day,p.o.), a cholinesterase inhibitor,also significantly ameliorated the learning deficit. These results suggest that paeoniflorin improves the impairment of non-spatial learning performance caused by cholinergic dysfunction in rats and that it may have a beneficial effect on senile dementia

    Behavioral Improvements and its Molecular Mechanism of Ilex kudingcha C.J. Tseng on Animal Model of Alzheimer’s Disease

    Get PDF
    Alzheimer's disease (AD) is a common chronic neurodegenerative disease with well-defined pathophysiological mechanisms. Ilex kudingcha (IK) C.J. Tseng is commonly known as bitter tea or “Khom” tea in Vietnam. The present study was conducted to investigate the anti-dementia effect of IK using olfactory bulbectomized (OBX) mice. OBX mice were daily treated with IK extract (540 mg/kg) or reference drug, tacrine (2.5 mg/kg) 1 week before and continuously for 3 days after the OBX surgery. The object recognition test, modified Y maze test and fear conditioning test were employed to analyze non-spatial short-term, spatial short-term and long-term memories of the mice respectively. Administration of IK extract and tacrine attenuated these OBX-induced cognitive deficits in mice. The effects of IK and tacrine on spatial short-term memory impairment were reversed by scopolamine, a muscarinic receptor antagonist. The amyloid-beta (Aβ) production in adult transgenic Drosophila brain flies was also investigated by using Western blotting with APP-HA antibody. These results indicated that IK extract improves short-term and long-term memory disturbances in OBX mice and that muscarinic receptor may play a role on these actions. In addition, our result also showed that IK extract reduces the expression of amyloid precursor protein (APP) in brain of AD model using Drosophila melanogaster

    Ameliorative Effects of Acanthopanax trifoliatus on Cognitive and Emotional Deficits in Olfactory Bulbectomized Mice: An Animal Model of Depression and Cognitive Deficits

    Get PDF
    Acanthopanax trifoliatus is a plant that has been traditionally used in Thailand as a vegetable and a tonic. This study investigated effects of the aqueous extract of its leaves (ATL) on cognitive and emotional deficits using an olfactory bulbectomized mouse (OBX) model. OBX mice were treated daily with ATL (250 and 500 mg/kg, p.o.) 3 days after OBX. Antidementia drug tacrine (2.5 mg/kg/day) and antidepressant drug imipramine (10 mg/kg/day) were given i.p. as reference drugs. OBX significantly impaired cognitive behavior in a novel object recognition test and a modified Y-maze test and induced depression-like behavior in a tail suspension test. ATL and tacrine treatment attenuated OBX-induced cognitive deficits, whereas ATL and imipramine improved OBX-induced depression-like behavior. Neurochemical studies conducted after completing behavioral experiments demonstrated that OBX downregulated the expression levels of cholinergic marker genes encoding choline acetyltransferase and muscarinic M1 receptor in a manner reversed by ATL and tacrine. Moreover, ATL and tacrine administration inhibited the ex vivo activity of acetylcholinesterase in the brain. These findings suggest that ATL is beneficial for the treatment of cognitive and emotional deficits related to dementia with depressive symptoms and that the antidementia effect of ATL is mediated by normalizing the function of central cholinergic systems

    DNA array analysis of gene expression changes by Choto-san in the ischemic rat brain

    Get PDF
    The effects of Choto-san on gene expression in the dementia model rat brain were studied using a DNA microarray system. Choto-san inhibited the expression of 181 genes that has been enhanced by permanent occlusion of the bilateral common carotid arteries (2VO). Choto-san also reversed the expression inhibition of 32 genes induced by 2VO. These results may suggest that Choto-san, which has been therapeutically used as an antidementive drug, shows therapeutic effects through gene expression changes痴呆モデル動物である両側総頸動脈永久結紮ラット脳中での釣藤散による遺伝子発現変化をDNAマイクロアレイ法により検討した。被検4,277種の遺伝子中181種類の発現が脳虚血4日後の脳中で上昇し,釣藤散1g/kg 1日1回3日間経口投与により回復することが明らかとなった。また,32種類の発現が,脳虚血により減少し,釣藤散で回復することもわかった。この結果より,釣藤散は関連遺伝子の発現変化を介して抗痴呆効果をあらわしている可能性が考えられる

    Neuroprotection by chotosan, a Kampo formula, against glutamate excitotoxicity involves the inhibition of GluN2B-, but not GluN2A-containing NMDA receptor-mediated responses in primary cultured cortical neurons

    No full text
    Chotosan (CTS), a traditional herbal formula called Kampo medicine, was shown to be effective in the treatment of vascular dementia in a clinical study, and exerted protective effects against transient cerebral ischemia-induced cognitive impairment in mice. In the present study, we investigated the neuroprotective effects of CTS using primary cultured rat cortical neurons. CTS (250–1000 μg/mL) inhibited neuronal death induced by 100 μM glutamate. This glutamate-induced neuronal death was blocked by a GluN2B-, but not GluN2A-containing NMDA receptor antagonist. Therefore, the neuroprotective effects of CTS were related to an inhibition of GluN2B-containing NMDA receptor-mediated responses
    corecore