109 research outputs found

    Two Types of Hynobius naevius from the Central Region of Kyushu Island, Japan (Caudata: Hynobiidae)

    Get PDF
    We surveyed allozymic variation among Hynobius naevius from 11 localities of central Kyushu, Japan. The results revealed the presence of two genetic groups (I and II) that exhibited a great difference in allelic frequency and a large genetic distance. Specimens from seven of the 11 localities invariably belonged to Group I, and those from three other localities belonged to Group II. In the remaining one locality, representatives of both of these two groups were found just as in northern Kyushu. The two genetic groups also differed in morphological (Group I larger than Group II in body size) and ecological characters (breeding sites located in open streams in Group I, but possibly in underground water in Group II). These differences might have been enabling them to coexist

    Leptospirosis Pathophysiology: Into the Storm of Cytokines

    Get PDF
    Leptospirosis is a neglected tropical zoonosis caused by pathogenic spirochetes of the genus Leptospira. Infected reservoir animals, typically mice and rats, are asymptomatic, carry the pathogen in their renal tubules, and shed pathogenic spirochetes in their urine, contaminating the environment. Humans are accidental hosts of pathogenic Leptospira. Most human infections are mild or asymptomatic. However, 10% of human leptospirosis cases develop into severe forms, including high leptospiremia, multi-organ injuries, and a dramatically increased mortality rate, which can relate to a sepsis-like phenotype. During infection, the triggering of the inflammatory response, especially through the production of cytokines, is essential for the early elimination of pathogens. However, uncontrolled cytokine production can result in a cytokine storm process, followed by a state of immunoparalysis, which can lead to sepsis and associated organ failures. In this review, the involvement of cytokine storm and subsequent immunoparalysis in the development of severe leptospirosis in susceptible hosts will be discussed. The potential contribution of major pro-inflammatory cytokines in the development of tissue lesions and systemic inflammatory response, as well as the role of anti-inflammatory cytokines in contributing to the onset of a deleterious immunosuppressive cascade will also be examined. Data from studies comparing susceptible and resistant mouse models will be included. Lastly, a concise discussion on the use of cytokines for therapeutic purposes or as biomarkers of leptospirosis severity will be provided

    Health challenges of the Pacific Region: insights from history, geography, social determinants, genetics, and the microbiome

    Get PDF
    The Pacific region, also referred to as Oceania, is a geographically widespread region populated by people of diverse cultures and ethnicities. Indigenous people in the region (Melanesians, Polynesians, Micronesians, Papuans, and Indigenous Australians) are over-represented on national, regional, and global scales for the burden of infectious and non-communicable diseases. Although social and environmental factors such as poverty, education, and access to health-care are assumed to be major drivers of this disease burden, there is also developing evidence that genetic and microbiotic factors should also be considered. To date, studies investigating genetic and/or microbiotic links with vulnerabilities to infectious and non-communicable diseases have mostly focused on populations in Europe, Asia, and USA, with uncertain associations for other populations such as indigenous communities in Oceania. Recent developments in personalized medicine have shown that identifying ethnicity-linked genetic vulnerabilities can be important for medical management. Although our understanding of the impacts of the gut microbiome on health is still in the early stages, it is likely that equivalent vulnerabilities will also be identified through the interaction between gut microbiome composition and function with pathogens and the host immune system. As rapid economic, dietary, and cultural changes occur throughout Oceania it becomes increasingly important that further research is conducted within indigenous populations to address the double burden of high rates of infectious diseases and rapidly rising non-communicable diseases so that comprehensive development goals can be planned. In this article, we review the current knowledge on the impact of nutrition, genetics, and the gut microbiome on infectious diseases in indigenous people of the Pacific region

    Hyper-hippocampal glycogen induced by glycogen loading with exhaustive exercise

    Get PDF
    Glycogen loading (GL), a well-known type of sports conditioning, in combination with exercise and a high carbohydrate diet (HCD) for 1 week enhances individual endurance capacity through muscle glycogen supercompensation. This exercise-diet combination is necessary for successful GL. Glycogen in the brain contributes to hippocampus-related memory functions and endurance capacity. Although the effect of HCD on the brain remains unknown, brain supercompensation occurs following exhaustive exercise (EE), a component of GL. We thus employed a rat model of GL and examined whether GL increases glycogen levels in the brain as well as in muscle, and found that GL increased glycogen levels in the hippocampus and hypothalamus, as well as in muscle. We further explored the essential components of GL (exercise and/or diet conditions) to establish a minimal model of GL focusing on the brain. Exercise, rather than a HCD, was found to be crucial for GL-induced hyper-glycogen in muscle, the hippocampus and the hypothalamus. Moreover, EE was essential for hyper-glycogen only in the hippocampus even without HCD. Here we propose the EE component of GL without HCD as a condition that enhances brain glycogen stores especially in the hippocampus, implicating a physiological strategy to enhance hippocampal functions

    Thiamine tetrahydrofurfuryl disulfide promotes voluntary activity through dopaminergic activation in the medial prefrontal cortex

    Get PDF
    A physically active lifestyle is associated with better health in body and mind, and it is urgent that supporting agents for such lifestyles be developed. In rodents, voluntary locomotor activity as an active physical behavior may be mediated by dopaminergic neurons (DNs). Thiamine phosphate esters can stimulate DNs, and we thus hypothesized that thiamine tetrahydrofurfuryl disulfide (TTFD), a thiamine derivative, promotes locomotor activity via DNs in rats. Acute i.p. administration of TTFD enhanced rat locomotor activity in a normal cage. In vivo microdialysis revealed that TTFD-enhanced locomotor activity was synchronized with dopamine release in the medial prefrontal cortex (mPFC). Antagonism of the dopamine D1 receptor, but not D2 receptor, in the mPFC fully suppressed TTFD-enhanced locomotor activity. Finally, we found a TTFD dose-dependent increase in voluntary wheel running. Our findings demonstrate that DNs in the mPFC mediates TTFD-enhanced locomotor activity, suggesting the potential of TTFD to induce active physical behavior

    Increased IP-10 production by blood–nerve barrier in multifocal acquired demyelinating sensory and motor neuropathy and multifocal motor neuropathy

    Get PDF
    Objective Dysfunction of the blood–nerve barrier (BNB) plays important roles in chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN). The aim of the present study was to identify the candidate cytokines/chemokines that cause the breakdown of the BNB using sera from patients with CIDP and MMN. Methods We determined the levels of 27 cytokines and chemokines in human peripheral nerve microvascular endothelial cells (PnMECs) after exposure to sera obtained from patients with CIDP variants (typical CIDP and multifocal acquired demyelinating sensory and motor neuropathy [MADSAM]), MMN and amyotrophic lateral sclerosis (ALS), and healthy controls (HC), using a multiplexed fluorescent bead-based immunoassay system. Results The induced protein (IP)10 level in the cells in both the MADSAM and MMN groups was markedly increased in comparison with the typical CIDP, ALS and HC groups. The other cytokines, including granulocyte colony-stimulating factor, vascular endothelial growth factor (VEGF) and interleukin-7, were also significantly upregulated in the MADSAM group. The increase of IP-10 produced by PnMECs was correlated with the presence of conduction block in both the MADSAM and MMN groups. Conclusion The autocrine secretion of IP-10 induced by patient sera in PnMECs was markedly upregulated in both the MADSAM and MMN groups. The overproduction of IP-10 by PnMECs leads to the focal breakdown of the BNB and may help to mediate the transfer of pathogenic T cells across the BNB, thereby resulting in the appearance of conduction block in electrophysiological studies of patients with MADSAM and MMN

    Bioavailability of prenyl quercetin

    Get PDF
    Prenyl flavonoids are widely distributed in plant foods and have attracted appreciable attention in relation to their potential benefits for human health. Prenylation may enhance the biological functions of flavonoids by introducing hydrophobic properties in their basic structures. Previously, we found that 8-prenyl naringenin exerted a greater preventive effect on muscle atrophy than nonprenylated naringenin in a mouse model. Here, we aimed to estimate the effect of prenylation on the bioavailability of dietary quercetin (Q). The cellular uptake of 8-prenyl quercetin (PQ) and Q in Caco-2 cells and C2C12 myotube cells was examined. Prenylation significantly enhanced the cellular uptake by increasing the lipophilicity in both cell types. In Caco-2 cells, efflux of PQ to the basolateral side was <15% of that of Q, suggesting that prenylation attenuates transport from the intestine to the circulation. After intragastric administration of PQ or Q to mice or rats, the area under the concentration-time curve for PQ in plasma and lymph was 52.5% and 37.5% lower than that of Q, respectively. PQ and its O-methylated form (MePQ) accumulated at much higher amounts than Q and O-methylated Q in the liver (Q: 3400%; MePQ: 7570%) and kidney (Q: 385%; MePQ: 736%) of mice after 18 d of feeding. These data suggest that prenylation enhances the accumulation of Q in tissues during long-term feeding, even though prenylation per se lowers its intestinal absorption from the diet

    Tyrosine as a Mechanistic-Based Biomarker for Brain Glycogen Decrease and Supercompensation With Endurance Exercise in Rats: A Metabolomics Study of Plasma

    Get PDF
    Brain glycogen, localized in astrocytes, produces lactate as an energy source and/or a signal factor to serve neuronal functions involved in memory formation and exercise endurance. In rodents, 4 weeks of chronic moderate exercise-enhancing endurance and cognition increases brain glycogen in the hippocampus and cortex, which is an adaption of brain metabolism achieved through exercise. Although this brain adaptation is likely induced due to the accumulation of acute endurance exercise–induced brain glycogen supercompensation, its molecular mechanisms and biomarkers are unidentified. Since noradrenaline synthesized from blood-borne tyrosine activates not only glycogenolysis but also glycogenesis in astrocytes, we hypothesized that blood tyrosine is a mechanistic-based biomarker of acute exercise–induced brain glycogen supercompensation. To test this hypothesis, we used a rat model of endurance exercise, a microwave irradiation for accurate detection of glycogen in the brain (the cortex, hippocampus, and hypothalamus), and capillary electrophoresis mass spectrometry–based metabolomics to observe the comprehensive metabolic profile of the blood. Endurance exercise induced fatigue factors such as a decrease in blood glucose, an increase in blood lactate, and the depletion of muscle glycogen, but those parameters recovered to basal levels within 6 h after exercise. Brain glycogen decreased during endurance exercise and showed supercompensation within 6 h after exercise. Metabolomics detected 186 metabolites in the plasma, and 110 metabolites changed significantly during and following exhaustive exercise. Brain glycogen levels correlated negatively with plasma glycogenic amino acids (serine, proline, threonine, glutamate, methionine, tyrosine, and tryptophan) (r < −0.9). This is the first study to produce a broad picture of plasma metabolite changes due to endurance exercise–induced brain glycogen supercompensation. Our findings suggest that plasma glycogenic amino acids are sensitive indicators of brain glycogen levels in endurance exercise. In particular, plasma tyrosine as a precursor of brain noradrenaline might be a valuable mechanistic-based biomarker to predict brain glycogen dynamics in endurance exercise

    A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system

    Get PDF
    Funding Information: Acknowledgements This work was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Green Technology Project EF-1004). We are grateful to Dr. Takuji Sasaki for his encouragement throughout the project and his excellent advice on the improvement of this manuscript, and to Dr. Shoshi Kikuchi for providing useful information on rice FL-cDNAs. We thank Professors Kokichi Hinata, Atsushi Hirai, Hiroshi Kamada and Masashi Ugaki for their encouragement, critical comments and helpful suggestions, and Drs. Hisato Okuizumi and Hiroyuki Kawahigashi for their administrative support throughout the project. We also thank Mayumi Akagawa, Hiroko Abe, Keiko Mori, Etsuko Sugai, Yumiko Nakane, Ken-ichi Watanabe, Mayumi Takeya, and Kana Miyata for their technical assistance; the members of the Technical Support Section of the National Institute of Agrobiological Sciences for their help in the care of the FOX-rice plants; Haruko Onodera and Kazuko Ono for their technical assistance and advice on rice transformation; Inplanta Innovations Inc. for their technical help on the construction of theThe latest report has estimated the number of rice genes to be ∼32 000. To elucidate the functions of a large population of rice genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the Full-length cDNA Over-eXpresser (FOX) gene-hunting system. This system is very useful for analyzing various gain-of-function phenotypes from large populations of transgenic plants overexpressing cDNAs of interest and others with unknown or important functions. We collected the plasmid DNAs of 13 980 independent full-length cDNA (FL-cDNA) clones to produce a FOX library by placing individual cDNAs under the control of the maize Ubiquitin-1 promoter. The FOX library was transformed into rice by Agrobacterium-mediated high-speed transformation. So far, we have generated approximately 12 000 FOX-rice lines. Genomic PCR analysis indicated that the average number of FL-cDNAs introduced into individual lines was 1.04. Sequencing analysis of the PCR fragments carrying FL-cDNAs from 8615 FOX-rice lines identified FL-cDNAs in 8225 lines, and a database search classified the cDNAs into 5462 independent ones. Approximately 16.6% of FOX-rice lines examined showed altered growth or morphological characteristics. Three super-dwarf mutants overexpressed a novel gibberellin 2-oxidase gene, confirming the importance of this system. We also show here the other morphological alterations caused by individual FL-cDNA expression. These dominant phenotypes should be valuable indicators for gene discovery and functional analysis.publishersversionPeer reviewe
    corecore