10,431 research outputs found

    Gutzwiller study of extended Hubbard models with fixed boson densities

    Full text link
    We studied all possible ground states, including supersolid (SS) phases and phase separations of hard-core- and soft-core-extended Bose--Hubbard models with fixed boson densities by using the Gutzwiller variational wave function and the linear programming method. We found that the phase diagram of the soft-core model depends strongly on its transfer integral. Furthermore, for a large transfer integral, we showed that an SS phase can be the ground state even below or at half filling against the phase separation. We also found that the density difference between nearest-neighbor sites, which indicates the density order of the SS phase, depends strongly on the boson density and transfer integral.Comment: 14 pages, 14 figures, to be published in Phys. Rev.

    Test evaluation of fuel cell catalysts Quarterly report, 15 Feb. - 15 May 1967

    Get PDF
    Catalytic activity of iron compounds for fuel cell catalyst

    Inelastic contribution of the resistivity in the hidden order in URu2Si2

    Full text link
    In the hidden order of URu2Si2 the resistivity at very low temperature shows no T^2 behavior above the transition to superconductivity. However, when entering the antiferromagnetic phase, the Fermi liquid behavior is recovered. We discuss the change of the inelastic term when entering the AF phase with pressure considering the temperature dependence of the Grueneisen parameter at ambient pressure and the influence of superconductivity by an extrapolation of high field data.Comment: 5 pages, 2 figures, SCES conference proceedin

    Confirmation of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest-neighbor interactions in Rb2{}_{2}Cu2{}_{2}Mo3{}_{3}O12{}_{12}

    Full text link
    We have investigated magnetic properties of Rb2_2Cu2_2Mo3_3O12_{12} powder. Temperature dependence of magnetic susceptibility and magnetic-field dependence of magnetization have shown that this cuprate is a model compound of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor (1NN) and antiferromagnetic second-nearest-neighbor (2NN) competing interactions (competing system). Values of the 1NN and 2NN interactions are estimated as J1=−138J_1 = -138 K and J2=51J_2 = 51 K (α≡J2/J1=−0.37\alpha \equiv J_2 / J_1 = -0.37). This value of α\alpha suggests that the ground state is a spin-singlet incommensurate state. In spite of relatively large J1J_1 and J2J_2, no magnetic phase transition appears down to 2 K, while an antiferromagnetic transition occurs in other model compounds of the competing system with ferromagnetic 1NN interaction. For that reason, Rb2_2Cu2_2Mo3_3O12_{12} is an ideal model compound to study properties of the incommensurate ground state that are unconfirmed experimentally.Comment: 6 pages, 4 figure

    Information-Seeking Activity of Rural Health Practitioners

    Get PDF
    Qualitative methods were used to identify the information-seeking activity (ISA) of rural health practitioners (non-physicians). Conditions shaping ISA were time, resources, and barriers. The primary strategy used was connecting with resources, particularly people. ISA led to consequences of problem resolution, greater competence, or more questions

    Effects of hole-doping on the magnetic ground state and excitations in the edge-sharing CuO2_2 chains of Ca2+x_{2+x}Y2−x_{2-x}Cu5_5O10_{10}

    Full text link
    Neutron scattering experiments were performed on the undoped and hole-doped Ca2+x_{2+x}Y2−x_{2-x}Cu5_5O10_{10}, which consists of ferromagnetic edge-sharing CuO2_2 chains. It was previously reported that in the undoped Ca2_2Y2_2Cu5_5O10_{10} there is an anomalous broadening of spin-wave excitations along the chain, which is caused mainly by the antiferromagnetic interchain interactions [Matsuda etet al.al., Phys. Rev. B 63, 180403(R) (2001)]. A systematic study of temperature and hole concentration dependencies of the magnetic excitations shows that the magnetic excitations are softened and broadened with increasing temperature or doping holes irrespective of QQ direction. The broadening is larger at higher QQ. A characteristic feature is that hole-doping is much more effective to broaden the excitations along the chain. It is also suggested that the intrachain interaction does not change so much with increasing temperature or doping although the anisotropic interaction and the interchain interaction are reduced. In the spin-glass phase (xx=1.5) and nearly disordered phase (xx=1.67) the magnetic excitations are much broadened in energy and QQ. It is suggested that the spin-glass phase originates from the antiferromagnetic clusters, which are caused by the hole disproportionation.Comment: 8 pages, submitted to Phys. Rev.
    • …
    corecore