187 research outputs found

    CD74 interacts with APP and suppresses the production of Aβ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer disease (AD) is characterized by senile plaques, which are mainly composed of β amyloid (Aβ) peptides. Aβ is cleaved off from amyloid precursor protein (APP) with consecutive proteolytic processing by β-secretase and γ-secretase.</p> <p>Results</p> <p>Here, we show that CD74, the invariant chain of class II major histocompatibility complex, interacts with APP and serves as a negative regulator of Aβ. CD74 resembles other APP interacters such as BRI2 and BRI3, since all of them reduce the level of Aβ. However, unlike BRIs, CD74 does not reduce the secretion of sAPPα or sAPPβ. Interestingly, in HeLa cells, over expression of CD74 steers APP, but not Notch, to large vacuoles created by CD74.</p> <p>Conclusion</p> <p>Taken together, we propose that CD74 inhibits Aβ production by interacting with and derailing normal trafficking of APP.</p

    Increased expression of glutathione peroxidase 3 prevents tendinopathy by suppressing oxidative stress

    Get PDF
    Tendinopathy, a degenerative disease, is characterized by pain, loss of tendon strength, or rupture. Previous studies have identified multiple risk factors for tendinopathy, including aging and fluoroquinolone use; however, its therapeutic target remains unclear. We analyzed self-reported adverse events and the US commercial claims data and found that the short-term use of dexamethasone prevented both fluoroquinolone-induced and age-related tendinopathy. Rat tendons treated systemically with fluoroquinolone exhibited mechanical fragility, histological change, and DNA damage; co-treatment with dexamethasone attenuated these effects and increased the expression of the antioxidant enzyme glutathione peroxidase 3 (GPX3), as revealed via RNA-sequencing. The primary role of GPX3 was validated in primary cultured rat tenocytes treated with fluoroquinolone or H2O2, which accelerates senescence, in combination with dexamethasone or viral overexpression of GPX3. These results suggest that dexamethasone prevents tendinopathy by suppressing oxidative stress through the upregulation of GPX3. This steroid-free approach for upregulation or activation of GPX3 can serve as a novel therapeutic strategy for tendinopathy
    corecore