483 research outputs found

    Inhibition of Y1 receptor signaling improves islet transplant outcome

    Get PDF
    Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe

    K201 (JTV-519) alters the spatiotemporal properties of diastolic Ca2+ release and the associated diastolic contraction during β-adrenergic stimulation in rat ventricular cardiomyocytes

    Get PDF
    K201 has previously been shown to reduce diastolic contractions in vivo during β-adrenergic stimulation and elevated extracellular calcium concentration ([Ca2+]o). The present study characterised the effect of K201 on electrically stimulated and spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release and contractile events in isolated rat cardiomyocytes during β-adrenergic stimulation and elevated [Ca2+]o. Parallel experiments using confocal microscopy examined spontaneous diastolic Ca2+ release events at an enhanced spatiotemporal resolution. 1.0 μmol/L K201 in the presence of 150 nmol/L isoproterenol (ISO) and 4.75 mmol/L [Ca2+]o significantly decreased the amplitude of diastolic contractions to ~16% of control levels. The stimulated free Ca2+ transient amplitude was significantly reduced, but stimulated cell shortening was not significantly altered. When intracellular buffering was taken into account, K201 led to an increase in action potential-induced SR Ca2+ release. Myofilament sensitivity to Ca2+ was not changed by K201. Confocal microscopy revealed diastolic events composed of multiple Ca2+ waves (2–3) originating at various points along the cardiomyocyte length during each diastolic period. 1.0 μmol/L K201 significantly reduced the (a) frequency of diastolic events and (b) initiation points/diastolic interval in the remaining diastolic events to 61% and 71% of control levels respectively. 1.0 μmol/L K201 can reduce the probability of spontaneous diastolic Ca2+ release and their associated contractions which may limit the propensity for the contractile dysfunction observed in vivo

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    The impact of nonlinear exposure-risk relationships on seasonal time-series data: modelling Danish neonatal birth anthropometric data

    Get PDF
    Background Birth weight and length have seasonal fluctuations. Previous analyses of birth weight by latitude effects identified seemingly contradictory results, showing both 6 and 12 monthly periodicities in weight. The aims of this paper are twofold: (a) to explore seasonal patterns in a large, Danish Medical Birth Register, and (b) to explore models based on seasonal exposures and a non-linear exposure-risk relationship. Methods Birth weight and birth lengths on over 1.5 million Danish singleton, live births were examined for seasonality. We modelled seasonal patterns based on linear, U- and J-shaped exposure-risk relationships. We then added an extra layer of complexity by modelling weighted population-based exposure patterns. Results The Danish data showed clear seasonal fluctuations for both birth weight and birth length. A bimodal model best fits the data, however the amplitude of the 6 and 12 month peaks changed over time. In the modelling exercises, U- and J-shaped exposure-risk relationships generate time series with both 6 and 12 month periodicities. Changing the weightings of the population exposure risks result in unexpected properties. A J-shaped exposure-risk relationship with a diminishing population exposure over time fitted the observed seasonal pattern in the Danish birth weight data. Conclusion In keeping with many other studies, Danish birth anthropometric data show complex and shifting seasonal patterns. We speculate that annual periodicities with non-linear exposure-risk models may underlie these findings. Understanding the nature of seasonal fluctuations can help generate candidate exposures

    Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+

    Get PDF
    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the pi- pi- pi+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The resonant nature of this wave is evident from the mass-dependent phase differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2 is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged; version 3 updated authors, text shortened, data unchange

    Macrophage CD74 contributes to MIF-induced pulmonary inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MIF is a critical mediator of the host defense, and is involved in both acute and chronic responses in the lung. Neutralization of MIF reduces neutrophil accumulation into the lung in animal models. We hypothesized that MIF, in the alveolar space, promotes neutrophil accumulation via activation of the CD74 receptor on macrophages.</p> <p>Methods</p> <p>To determine whether macrophage CD74 surface expression contributes MIF-induced neutrophil accumulation, we instilled recombinant MIF (r-MIF) into the trachea of mice in the presence or absence of anti-CD74 antibody or the MIF specific inhibitor, ISO-1. Using macrophage culture, we examined the downstream pathways of MIF-induced activation that lead to neutrophil accumulation.</p> <p>Results</p> <p>Intratracheal instillation of r-MIF increased the number of neutrophils as well as the concentration of macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived chemokine (KC) in BAL fluids. CD74 was found to be expressed on the surface of alveolar macrophages, and MIF-induced MIP-2 accumulation was dependent on p44/p42 MAPK in macrophages. Anti-CD74 antibody inhibited MIF-induced p44/p42 MAPK phosphorylation and MIP-2 release by macrophages. Furthermore, we show that anti-CD74 antibody inhibits MIF-induced alveolar accumulation of MIP-2 (control IgG vs. CD74 Ab; 477.1 ± 136.7 vs. 242.2 ± 102.2 pg/ml, p < 0.05), KC (1796.2 ± 436.1 vs. 1138.2 ± 310.2 pg/ml, p < 0.05) and neutrophils (total number of neutrophils, 3.33 ± 0.93 × 10<sup>4 </sup>vs. 1.90 ± 0.61 × 10<sup>4</sup>, p < 0.05) in our mouse model.</p> <p>Conclusion</p> <p>MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.</p

    Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin

    Get PDF
    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR–neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH–π interactions in the Ls-AChBP–CTD complex than in the Ls-AChBP–IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs

    Comparative genomics of Escherichia coli isolated from patients with inflammatory bowel disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory bowel disease (IBD) is used to describe a state of idiopathic, chronic inflammation of the gastrointestinal tract. The two main phenotypes of IBD are Crohn's disease (CD) and ulcerative colitis (UC). The major cause of IBD-associated mortality is colorectal cancer. Although both host-genetic and exogenous factors have been found to be involved, the aetiology of IBD is still not well understood. In this study we characterized thirteen <it>Escherichia coli </it>strains from patients with IBD by comparative genomic hybridization employing a microarray based on 31 sequenced <it>E. coli </it>genomes from a wide range of commensal and pathogenic isolates.</p> <p>Results</p> <p>The IBD isolates, obtained from patients with UC and CD, displayed remarkably heterogeneous genomic profiles with little or no evidence of group-specific determinants. No IBD-specific genes were evident when compared with the prototypic CD isolate, LF82, suggesting that the IBD-inducing effect of the strains is multifactorial. Several of the IBD isolates carried a number of extraintestinal pathogenic <it>E. coli </it>(ExPEC)-related virulence determinants such as the <it>pap</it>, <it>sfa</it>, <it>cdt </it>and <it>hly </it>genes. The isolates were also found to carry genes of ExPEC-associated genomic islands.</p> <p>Conclusions</p> <p>Combined, these data suggest that <it>E. coli </it>isolates obtained from UC and CD patients represents a heterogeneous population of strains, with genomic profiles that are indistinguishable to those of ExPEC isolates. Our findings indicate that IBD-induction from <it>E. coli </it>strains is multifactorial and that a range of gene products may be involved in triggering the disease.</p
    corecore