6,605 research outputs found

    Apparent Clustering of Intermediate-redshift Galaxies as a Probe of Dark Energy

    Full text link
    We show the apparent redshift-space clustering of galaxies in redshift range of 0.2--0.4 provides surprisingly useful constraints on dark energy component in the universe, because of the right balance between the density of objects and the survey depth. We apply Fisher matrix analysis to the the Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), as a concrete example. Possible degeneracies in the evolution of the equation of state (EOS) and the other cosmological parameters are clarified.Comment: 5 pages, 3 figures, Phys.Rev.Lett., replaced with the accepted versio

    Ground-State Properties of a Heisenberg Spin Glass Model with a Hybrid Genetic Algorithm

    Full text link
    We developed a genetic algorithm (GA) in the Heisenberg model that combines a triadic crossover and a parameter-free genetic algorithm. Using the algorithm, we examined the ground-state stiffness of the ±J\pm J Heisenberg model in three dimensions up to a moderate size range. Results showed the stiffness constant of θ=0\theta = 0 in the periodic-antiperiodic boundary condition method and that of θ0.62\theta \sim 0.62 in the open-boundary-twist method. We considered the origin of the difference in θ\theta between the two methods and suggested that both results show the same thing: the ground state of the open system is stable against a weak perturbation.Comment: 11 pages, 5 figure

    BEC for a Coupled Two-type Hard Core Bosons Model

    Full text link
    We study a solvable model of two types hard core Bose particles. A complete analysis is given of its equilibrium states including the proof of existence of Bose-Einstein condensation. The plasmon frequencies and the quantum normal modes corresponding to these frequencies are rigorously constructed. In particular we show a two-fold degeneracy of these frequencies. We show that all this results from spontaneous gauge symmetry breakdown

    Cluster Heat Bath Algorithm in Monte Carlo Simulations of Ising Models

    Full text link
    We have proposed a cluster heat bath method in Monte Carlo simulations of Ising models in which one of the possible spin configurations of a cluster is selected in accordance with its Boltzmann weight. We have argued that the method improves slow relaxation in complex systems and demonstrated it in an axial next-nearest-neighbor Ising(ANNNI) model in two-dimensions.Comment: 10 pages, REVTeX, 2 figures, to appear in Phys.Rev.Let

    Parisi States in a Heisenberg Spin-Glass Model in Three Dimensions

    Full text link
    We have studied low-lying metastable states of the ±J\pm J Heisenberg model in two (d=2d=2) and three (d=3d=3) dimensions having developed a hybrid genetic algorithm. We have found a strong evidence of the occurrence of the Parisi states in d=3d=3 but not in d=2d=2. That is, in LdL^d lattices, there exist metastable states with a finite excitation energy of ΔEO(J)\Delta E \sim O(J) for LL \to \infty, and energy barriers ΔW\Delta W between the ground state and those metastable states are ΔWO(JLθ)\Delta W \sim O(JL^{\theta}) with θ>0\theta > 0 in d=3d=3 but with θ<0\theta < 0 in d=2d=2. We have also found droplet-like excitations, suggesting a mixed scenario of the replica-symmetry-breaking picture and the droplet picture recently speculated in the Ising SG model.Comment: 4 pages, 6 figure

    Specific Nature of Hydrolysis of Insulin and Tobacco Mosaic Virus Protein by Thermolysin

    Get PDF
    Oxidized bovine insulin and tobacco mosaic virus protein used to determine hydrolysis specificity of thermolysi

    Spin-Glass and Chiral-Glass Transitions in a ±J\pm J Heisenberg Spin-Glass Model in Three Dimensions

    Full text link
    The three-dimensional ±J\pm J Heisenberg spin-glass model is investigated by the non-equilibrium relaxation method from the paramagnetic state. Finite-size effects in the non-equilibrium relaxation are analyzed, and the relaxation functions of the spin-glass susceptibility and the chiral-glass susceptibility in the infinite-size system are obtained. The finite-time scaling analysis gives the spin-glass transition at Tsg/J=0.210.02+0.01T_{\rm sg}/J=0.21_{-0.02}^{+0.01} and the chiral-glass transition at Tcg/J=0.220.03+0.01T_{\rm cg}/J=0.22_{-0.03}^{+0.01}. The results suggest that both transitions occur simultaneously. The critical exponent of the spin-glass susceptibility is estimated as γsg=1.7±0.3\gamma_{\rm sg}= 1.7 \pm 0.3, which makes an agreement with the experiments of the insulating and the canonical spin-glass materials.Comment: 4 pages, 2 figure

    On the Chemical Formula of Chalcopyrite

    Get PDF
    corecore