2,646 research outputs found
Junction Electron-Beam-Induced Current Techniques for the Analysis of Photovoltaic Devices
A number of useful electron-beam-induced current (EBIC) techniques have evolved through the study of junction behavior in photovoltaic (PV) devices in cross section as a function of light and voltage bias, temperature, and electron beam scanning parameters. The necessary hardware modifications, the techniques themselves, and their applications are presented. In the case of PV devices, light and/or voltage biasing the entire device while electron probing it in cross section permits the observation of the distribution of the narrowing or extension of the space-charge region. Monitoring the junction behavior as a function of temperature has at least two applications. In situ heating of the device in the junction EBIC (JEBIC) mode permits the observation of the rate of movement of the junction further into the material as a function of time and temperature. Through low-temperature studies of cross sections, the change in the material\u27s electrical properties have been recorded and correlated with device I-V and quantum efficiency measurements at these temperatures. Further, the JEBIC profile has been used to predict the quantum efficiency of the device. In the case of thin-film CdS/CuinSe2 devices, newly developed JEBIC techniques have been instrumental in determining the role of oxygen in improving device performance and stability
Loki, Io: New groundbased observations and a model describing the change from periodic overturn
Loki Patera is the most powerful volcano in the solar system. We have
obtained measurements of Loki's 3.5 micron brightness from NASA's Infrared
Telescope Facility (IRTF) and have witnessed a change from the periodic
behavior previously noted. While Loki brightened by a factor of several every
540 days prior to 2001, from 2001 through 2004 Loki remained at a constant,
medium brightness. We have constructed a quantitative model of Loki as a
basaltic lava lake whose solidified crust overturns when it becomes buoyantly
unstable. By altering the speed at which the overturn propagates across the
patera, we can match our groundbased brightness data. In addition, we can match
other data taken at other times and wavelengths. By slowing the propagation
speed dramatically, we can match the observations from 2001-2004. This slowing
may be due to a small change in volatile content in the magma
IR-dust observations of Comet Tempel 2 with CRAF VIMS
Measurement strategies are now being planned for using the Visual and Infrared Mapping Spectrometer (VIMS) to observe the asteroid Hestia, and the nucleus, and the gas and dust in the coma of comet P/Tempel 2 as part of the Comet Rendezvous Asteroid Flyby (CRAF) mission. The spectral range of VIMS will cover wavelengths from 0.35 to 5.2 micrometers, with a spectral resolution of 11 nm from 0.35 to 2.4 micrometers and of 22 nm from 2.4 to 5.2 micrometers. The instantaneous field of view (IFOV) provided by the foreoptics is 0.5 milliradians, and the current design of the instrument provides for a scanning secondary mirror which will scan a swath of length 72 IFOVs. The CRAF high resolution scan platform motion will permit slewing VIMS in a direction perpendicular to the swath. This enables the building of a two dimensional image in any or all wavelength channels. Important measurements of the dust coma will include the onset of early coma activity, the mapping of gas and dust jets and correlations with active nucleus areas, observations of the dust coma from various scattering phase angles, coverage of the low wavelength portion of the thermal radiation, and the 3.4 micrometer hydrocarbon emission. A description of the VIMS instrument is presented
Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy
Hyperbolic polariton modes are highly appealing for a broad range of
applications in nanophotonics, including surfaced enhanced sensing,
sub-diffractional imaging and reconfigurable metasurfaces. Here we show that
attenuated total reflectance micro-spectroscopy (ATR) using standard
spectroscopic tools can launch hyperbolic polaritons in a Kretschmann-Raether
configuration. We measure multiple hyperbolic and dielectric modes within the
naturally hyperbolic material hexagonal boron nitride as a function of
different isotopic enrichments and flake thickness. This overcomes the
technical challenges of measurement approaches based on nanostructuring, or
scattering scanning nearfield optical microscopy. Ultimately, our ATR approach
allows us to compare the optical properties of small-scale materials prepared
by different techniques systematicallyComment: 13 pages 4 figure
Novel ultrastructures of Treponema primitia and their implications for motility
Members of the bacterial phylum Spirochaetes are generally helical cells propelled by periplasmic flagella. The spirochete Treponema primitia is interesting because of its mutualistic role in the termite gut, where it is believed to cooperate with protozoa that break down cellulose and produce H2 as a by-product. Here we report the ultrastructure of T. primitia as obtained by electron cryotomography of intact, frozen-hydrated cells. Several previously unrecognized external structures were revealed, including bowl-like objects decorating the outer membrane, arcades of hook-shaped proteins winding along the exterior and tufts of fibrils extending from the cell tips. Inside the periplasm, cone-like structures were found at each pole. Instead of the single peptidoglycan layer typical of other Gram-negative bacteria, two distinct periplasmic layers were observed. These layers formed a central open space that contained two flagella situated adjacent to each other. In some areas, the inner membrane formed flattened invaginations that protruded into the cytoplasm. High-speed light microscopic images of swimming T. primitia cells showed that cell bodies remained rigid and moved in a helical rather than planar motion. Together, these findings support the 'rolling cylinder' model for T. primitia motility that posits rotation of the protoplasmic cylinder within the outer sheath
Multiple Projection Optical Diffusion Tomography with Plane Wave Illumination
We describe a new data collection scheme for optical diffusion tomography in
which plane wave illumination is combined with multiple projections in the slab
imaging geometry. Multiple projection measurements are performed by rotating
the slab around the sample. The advantage of the proposed method is that the
measured data can be much more easily fitted into the dynamic range of most
commonly used detectors. At the same time, multiple projections improve image
quality by mutually interchanging the depth and transverse directions, and the
scanned (detection) and integrated (illumination) surfaces. Inversion methods
are derived for image reconstructions with extremely large data sets. Numerical
simulations are performed for fixed and rotated slabs
NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results
The NEOWISE dataset offers the opportunity to study the variations in albedo
for asteroid classification schemes based on visible and near-infrared
observations for a large sample of minor planets. We have determined the
albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo
taxonomic classification schemes. We find that the S-complex spans a broad
range of bright albedos, partially overlapping the low albedo C-complex at
small sizes. As expected, the X-complex covers a wide range of albedos. The
multi-wavelength infrared coverage provided by NEOWISE allows determination of
the reflectivity at 3.4 and 4.6 m relative to the visible albedo. The
direct computation of the reflectivity at 3.4 and 4.6 m enables a new
means of comparing the various taxonomic classes. Although C, B, D and T
asteroids all have similarly low visible albedos, the D and T types can be
distinguished from the C and B types by examining their relative reflectance at
3.4 and 4.6 m. All of the albedo distributions are strongly affected by
selection biases against small, low albedo objects, as all objects selected for
taxonomic classification were chosen according to their visible light
brightness. Due to these strong selection biases, we are unable to determine
whether or not there are correlations between size, albedo and space
weathering. We argue that the current set of classified asteroids makes any
such correlations difficult to verify. A sample of taxonomically classified
asteroids drawn without significant albedo bias is needed in order to perform
such an analysis.Comment: Accepted to Ap
- …