46 research outputs found

    IgG transmitted from allergic mothers decreases allergic sensitization in breastfed offspring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanism(s) responsible for the reduced risk of allergic disease in breastfed infants are not fully understood. Using an established murine model of asthma, we demonstrated previously that resistance to allergic airway disease transmitted from allergic mothers to breastfed offspring requires maternal B cell-derived factors.</p> <p>Objective</p> <p>The aim of this study was to investigate the role of offspring neonatal Fc receptor for IgG uptake by intestinal epithelial cells (FcRn) in this breast milk transferred protection from allergy.</p> <p>Methods</p> <p>Allergic airway disease was induced during pregnancy in C57BL/6 female mice. These allergic mothers foster nursed naive FcRn<sup>+/- </sup>or FcRn<sup>-/- </sup>progeny born to FcRn<sup>+/- </sup>females that were mated to C57BL/6J-FcRn<sup>-/- </sup>male mice. In offspring deficient in FcRn, we expected reduced levels of systemic allergen-specific IgG<sub>1</sub>, a consequence of decreased absorption of maternal IgG from the lumen of the neonatal gastrointestinal tract. Using this model, we were able to investigate how breast milk IgG affected offspring responses to allergic sensitization.</p> <p>Results</p> <p>Levels of maternal antibodies absorbed from the breast milk of allergic foster mothers were determined in weanling FcRn-sufficient or -deficient mice. Maternal transmission of allergen-specific IgG<sub>1 </sub>to breastfed FcRn<sup>-/- </sup>offspring was at levels 10<sup>3</sup>-10<sup>4 </sup>lower than observed in FcRn<sup>+/- </sup>or FcRn<sup>+/+ </sup>mice. Five weeks after weaning, when offspring were 8 wk old, mice were sensitized and challenged to evaluate their susceptibility to develop allergic airway disease. Protection, indicated by reduced parameters of disease (allergen-specific IgE in serum, eosinophilic inflammation in the airways and lung) were evident in FcRn-sufficient mice nursed as neonates by allergic mothers. In contrast, FcRn-deficient mice breastfed by the same mothers acquired limited, if any, protection from development of allergen-specific IgE and associated pathology.</p> <p>Conclusions</p> <p>FcRn expression was a major factor in determining how breastfed offspring of allergic mothers acquired levels of systemic allergen-specific IgG<sub>1 </sub>sufficient to inhibit allergic sensitization in this model.</p

    Maternal Transmission of Resistance to Development of Allergic Airway Disease

    Get PDF
    Parental phenotype is known to influence the inheritance of atopic diseases, such as allergic asthma, with a maternal history being a more significant risk factor for progeny than paternal history. We hypothesized that recall Th1- or Th2-type immune responses during pregnancy would result in transfer of maternal factors that would differentially impact development of immune responsiveness in offspring. Following weaning, susceptibility and severity of allergic airway disease (a murine model of human asthma) was evaluated in progeny, disease being elicited by immunization with OVA-Al(OH)3 and challenge with aerosolized OVA. We found that progeny of mothers with Th1-biased immunity to OVA subjected to recall aerosol challenge during pregnancy had reduced levels of Ag-specific IgE and airway eosinophilia compared with progeny of mothers with Th2-biased immunity to OVA or naive mothers. Interestingly, progeny of mothers with Th1-type immunity to a heterologous albumin, BSA, were not protected from developing OVA-induced allergic airway disease. These findings demonstrated that maternal transfer of protection from development of allergic airway disease to offspring in this model of maternal Th1-type immunity was Ag specific

    High-resolution microbiome analysis reveals exclusionary Klebsiella species competition in preterm infants at risk for necrotizing enterocolitis.

    Get PDF
    Intestinal colonization with Klebsiella has been linked to necrotizing enterocolitis (NEC), but methods of analysis usually failed to discriminate Klebsiella species or strains. A novel ~ 2500-base amplicon (StrainID) that spans the 16S and 23S rRNA genes was used to generate amplicon sequence variant (ASV) fingerprints for Klebsiella oxytoca and Klebsiella pneumoniae species complexes (KoSC and KpSC, respectively) and co-occurring fecal bacterial strains from 10 preterm infants with NEC and 20 matched controls. Complementary approaches were used to identify cytotoxin-producing isolates of KoSC. Klebsiella species colonized most preterm infants, were more prevalent in NEC subjects versus controls, and replaced Escherichia in NEC subjects. Single KoSC or KpSC ASV fingerprinted strains dominated the gut microbiota, suggesting exclusionary Klebsiella competition for luminal resources. Enterococcus faecalis was co-dominant with KoSC but present infrequently with KpSC. Cytotoxin-producing KoSC members were identified in most NEC subjects and were less frequent in controls. Few Klebsiella strains were shared between subjects. We conclude that inter-species Klebsiella competition, within an environment of KoSC and E. faecalis cooperation, appears to be an important factor for the development of NEC. Preterm infants seem to acquire Klebsiella primarily through routes other than patient-to-patient transmission

    Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells

    Get PDF
    The incidence of atopic conditions has increased in industrialized countries. Persisting symptoms and concern for drug side-effects lead patients toward adjunctive treatments such as phytotherapy. Previously, we have shown that Bromelain (sBr), a mixture of cysteine proteases from pineapple, Ananas comosus, inhibits ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). However, sBr’s effect on development of AAD when treatment is administered throughout OVA-alum sensitization was unknown and is the aim of the present study. C57BL/6J mice were sensitized with OVA/alum and challenged with 7 days OVA aerosol. sBr 6 mg/kg/0.5 ml or PBS vehicle were administered throughout sensitization. Lung, bronchoalveolar lavage (BAL), spleen, and lymph nodes were processed for flow cytometry and OVA-specific IgE was determined via ELISA. sBr treatment throughout OVA-alum sensitization significantly reduced the development of AAD (BAL eosinophils and lymphocytes). OVA-specific IgE and OVA TET+ cells were decreased. sBr reduced CD11c+ dendritic cell subsets, and in vitro treatment of DCs significantly reduced CD44, a key receptor in both cell trafficking and activation. sBr was shown to reduce allergic sensitization and the generation of AAD upon antigen challenge. These results provide additional insight into sBr's anti-inflammatory and antiallergic properties and rationale for translation into the clinical arena

    Bacterial Indole as a Multifunctional Regulator of Klebsiella oxytoca Complex Enterotoxicity.

    Get PDF
    Gastrointestinal microbes respond to biochemical metabolites that coordinate their behaviors. Here, we demonstrate that bacterial indole functions as a multifactorial mitigator of Klebsiella grimontii and Klebsiella oxytoca pathogenicity. These closely related microbes produce the enterotoxins tilimycin and tilivalline; cytotoxin-producing strains are the causative agent of antibiotic-associated hemorrhagic colitis and have been associated with necrotizing enterocolitis of premature infants. We demonstrate that carbohydrates induce cytotoxin synthesis while concurrently repressing indole biosynthesis. Conversely, indole represses cytotoxin production. In both cases, the alterations stemmed from differ- ential transcription of npsA and npsB, key genes involved in tilimycin biosynthesis. Indole also enhances conversion of tilimycin to tilivalline, an indole analog with reduced cytotox- icity. In this context, we established that tilivalline, but not tilimycin, is a strong agonist of pregnane X receptor (PXR), a master regulator of xenobiotic detoxification and intestinal inflammation. Tilivalline binding upregulated PXR-responsive detoxifying genes and inhib- ited tubulin-directed toxicity. Bacterial indole, therefore, acts in a multifunctional manner to mitigate cytotoxicity by Klebsiella spp.: suppression of toxin production, enhanced con- version of tilimycin to tilivalline, and activation of PXR

    Custom Integrated Circuits

    Get PDF
    Contains reports on six research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0004)Analog Devices, Inc.Defense Advanced Research Projects Agency (Contract N00014-80-C-0622)National Science Foundation (Grant ECS83-10941

    Crop Updates - 2003 Weeds

    Get PDF
    This session covers Thirty four papers from different authors INTRODUCTION INTEGRATED WEED MANAGEMENT IWM system studies/demonstration sites Six years of IWM investigation – what does it tell us? Bill Roy, Agricultural Consulting and Research Services Pty Ltd Long term herbicide resistance site, the final chapter, Peter Newman and Glen Adam, Department of Agriculture Management of skeleton weed (chondrilla juncea) in a cropping rotation in Western Australia, J. R. Peirce and B. J. Rayner, Department of Agriculture WEED BIOLOGY AND COMPETITION Annual ryegrass seedbanks: The good, the bad and the ugly, Kathryn J. Steadman1, Amanda J. Ellery2 and Sally C. Peltzer3 , 1WA Herbicide Resistance Initiative, UWA, 2CSIRO Plant Industry, 3 Department of Agriculture Annual ryegrass seeds after-ripen faster during a hot summer, Kathryn J. Steadman1, Gavin P. Bignell1 and Amanda J. Ellery2, 1WA Herbicide Resistance Initiative, UWA, 2CSIRO Plant Industry Predicting annual ryegrass dormancy from climatic variables, Amanda Ellery, Andrew Moore, Sandy Nedelkos, Ross Chapman, CSIRO Plant Industry Removing dormancy in annual ryegrass seeds for early herbicide resistance testing, Kathryn J. Steadman and Mechelle J. Owen, WA Herbicide Resistance Initiative, UWA Annual ryegrass germination responds to nitrogen, Amanda Ellery1, Simone Dudley1 and Robert Gallagher2, 1CSIRO Plant Industry, 2Washington State University The agro-ecology of Malva parviflora (small flowered mallow), Pippa J. Michael, Kathryn J. Steadman and Julie A. Plummer, Western Australia Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia The looming threat of wild radish, Peter Newman, Department of Agriculture IWM TOOLS Double knock, how close can we go? Peter Newman and Glen Adam, Department of Agriculture Double knock herbicide effect on annual ryegrass, Catherine Borger, Abul Hashem and Nerys Wilkins, Department of Agriculture Tactical techniques for managing Annual Ryegrass, Sally Peltzer1, Alex Douglas1, Fran Hoyle1, Paul Matson1 and Michael Walsh2 Department of Agriculture and 2Western Australian Herbicide Resistance Initiative. Weed control through soil inversion, Sally Peltzer, Alex Douglas and Paul Matson, Department of Agriculture The burning issues of annual ryegrass seed control, Darren Chitty and Michael Walsh, Western Australian Herbicide Resistance Initiative, UWA No sign of chaff-cart resistant ryegrass! David Ferris, WA Herbicide Resistance Initiative UWA PACKAGES AND MODELLING Conserving glyphosate susceptibility – modelling past, present and future us. Paul Neve1, Art Diggle2, Patrick Smith3 and Stephen Powles1 ,1Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, 2Department of Agriculture, 3CSIRO Sustainable Ecosystems WEEDEM: A program for predicting weed emergence in Western Australia, Michael Walsh,1 David Archer2, James Eklund2 and Frank Forcella2, 1Western Australia Herbicide Resistance Initiative, UWA, 2USDA-Agricultural Research Service, 803 Iowa Avenue, Morris, MN 56267, USA Weed and herbicide management for long term profit: A workshop, Alister Draper1 and Rick Llewellyn12, 1WA Herbicide Resistance Initiative, 2School of Agricultural and Resource Economics, University of Western Australia HERBICIDE RESISTANCE Alternative herbicides for control of triazine and diflufenican multiple resistant wild radish, Aik Cheam1, Siew Lee1, David Nicholson1 and Mike Clarke2 1Department of Agriculture, Western Australia, 2Bayer CropScience Resistance of wild mustard biotype to ALS-inhibiting herbicides in WA Wheatbelt, Abul Hashem, Department of Agriculture Glyphosate-resistant ryegrass biotypes in the WA wheatbelt, Abul Hashem, Catherine Borger and Nerys Wilkins, Department of Agriculture Implications of herbicide rates for resistance management, Paul Neve, Western Australian Herbicide Resistance Initiative, University of Western Australia Putting a price on herbicide resistance, Rick Llewellyn, School of Agricultural and Resource Economics/WA Herbicide Resistance Initiative, University of Western Australia Herbicide resistance from over the fence: Mobility and management, Debbie Allena, Rick Llewellynb, aUniversity of Western Australia, 4th year student, 2002. Mingenew-Irwin Group, bSchool of Agricultural and Resource Economics/Western Australia Herbicide Resistance Initiative, University of Western Australia HERBICIDE TOLERANCE Herbicide tolerance of new barley varieties, Harmohinder S. Dhammu and Terry Piper, Department of Agriculture Herbicide tolerance of new lupins, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Department of Agriculture Herbicide tolerance of new field pea varieties, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Department of Agriculture Herbicide tolerance of new lentil varieties, H.S. Dhammu, T.J. Piper and L.E. Young, Department of Agriculture HERBICIDES – NEW PRODUCTS/PRODUCT USES; USE Kill half leaf ryegrass with Spray.Seed® at night, Peter Newman and Glenn Adam, Department of Agriculture CLEARFIELD™ wheat to control hard-to-kill weeds, Abul Hashem, Catherine Borger and Nerys Wilkins, Department of Agriculture Diuron, a possible alternative to simazine pre-emergent in lupins, Peter Newman and Glenn Adam, Department of Agriculture Dual Gold® soft on barley, soft on weeds in dry conditions, Peter Newman and Glenn Adam, Department of Agriculture Dual Gold® soft on lupins, soft on ryegrass in dry conditions, Peter Newman and Glenn Adam, Department of Agricultur

    Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa

    Get PDF
    Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge

    Crop Updates 2002 - Geraldton

    Get PDF
    This session covers twenty seven papers from different authors: 1. Taking the Why out of Wyalkatchem – the new widely adapted wheat variety, Steve Penny Jr, Department of Agriculture 2. Future wheat varieties, Robin Wilson, Iain Barclay,Robyn McLean, Robert Loughman, Jenny Garlinge, Bill Lambe, Neil Venn and Peter Clarke Department of Agriculture 3. Maximising wheat variety performance through agronomic management, Wal Anderson, Raffaele Del Cima, James Bee, Darshan Sharma, Sheena Lyon, Melaine Kupsch, Mohammad Amjad, Pam Burgess, Veronika Reck, Brenda Shackley, Ray Tugwell, Bindi Webb and Steve Penny Jr Department of Agriculture 4. Cereal rust update 2002 – a new stem rust on Camm wheat, Robert Loughman1and Robert Park2 1Department of Agriculture, 2University of Sydney 5. Influence of nutrition and environmental factors on seed vigour in wheat, Darshan Sharma, Wal Anderson and Daya Patabendige, Department of Agriculture 6. Cereal aphids and direct feeding damage to cereals, Phil Michael, Department of Agriculture 7. A decision support system for control of aphids and BYDV in cereal crops, Debbie Thackray, Jenny Hawkes and Roger Jones, Department of Agriculture and Centre for Legumes in Mediterranean Agriculture 8. Summary of 2001 weather and seasonal prospects for 2002, David Stephens, Department of Agriculture 9. Towards a management package for grain protein in lupins, Bob French, Senior Research Officer, Department of Agriculture 10. Lupin genotypes respond differently to potash, Bob French and Laurie Wahlsten, Senior Research Officer and Technical Officer, Department of Agriculture 11. Time of harvest for improved seed yield of pulses, G. Riethmuller and B. French, Department of Agriculture 12. Comparing the phosphorus requirement of field pea and wheat, M. Bolland and P. White, Department of Agriculture Western Australia 13. Field pea variety evaluation, T. Khan, Department of Agriculture Western Australia 14. Diamondback moth (DBM) in canola, Kevin Walden, Department of Agriculture 15. WA blackleg resistance ratings on canola varieties for 2002, Ravjit Khangura, Martin J. Barbetti and Graham Walton, Department of Agriculture 16. The effect of single or multiple spray treatments on the control of Diamondback moth (Plutella xylostella) and yield of canola at Wongan Hills, Françoise Berlandier, Paul Carmody and Christiaan Valentine, Department of Agriculture 17. Perennial pastures in annual cropping systems: Lucerne and beyond, Roy Latta and Keith Devenish, Department of Agriculture 18. Nutrition in 2002: Decisions to be made as a result of last season, Bill Bowden,Department of Agriculture 19. Profitability of deep banding lime, Michael O\u27Connell, Chris Gazey and David Gartner, Department of Agriculture 20. Economic comparisons of farming systems for the medium rainfall northern sandplain, Caroline Peek and David Rogers, Department of Agriculture 21. The use of Twist Fungus as a biosecurity measure against Annual Ryegrass Toxicity (ARGT), Greg Shea, GrainGuard Coordinator and George Yan, Biological and Resource Technology 22. Major outcomes from IWM demonstration sites, Alexandra Douglas, Department of Agriculture 23. Understanding the weed seed bank life of important agricultural weeds, Sally Peltzer and Paul Matson, Department of Agriculture 24. Seeding rate, row spacing and herbicides for weed control, David Minkey, Department of Agriculture 25. Improving weed control in grazed pastures using legumes with low palatability, Clinton Revell and Giles Glasson, Department of Agriculture, Dean Thomas, Faculty of Agriculture, University of Western Australia 26. Group F resistant wild radish: What’s new? Aik Cheam1, Siew Lee1and Mike Clarke2, 1Department of Agriculture WA, 2Aventis Crop Science 27. Knockdown herbicides do not reliably kill small grass weeds, Peter Newman and Glenn Adam, Department of Agricultur

    Identification of the top TESS objects of interest for atmospheric characterization of transiting exoplanets with JWST

    Get PDF
    Funding: Funding for the TESS mission is provided by NASA's Science Mission Directorate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial support by JSPS KAKENHI (grant No. JP18H05439) and JST PRESTO (grant No. JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. This paper makes use of data from the MEarth Project, which is a collaboration between Harvard University and the Smithsonian Astrophysical Observatory. The MEarth Project acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grant Nos. AST-0807690, AST-1109468, AST-1616624 and AST-1004488 (Alan T. Waterman Award), the National Aeronautics and Space Administration under grant No. 80NSSC18K0476 issued through the XRP Program, and the John Templeton Foundation. C.M. would like to gratefully acknowledge the entire Dragonfly Telephoto Array team, and Bob Abraham in particular, for allowing their telescope bright time to be put to use observing exoplanets. B.J.H. acknowledges support from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program (grant No. 80NSSC20K1551) and support by NASA under grant No. 80GSFC21M0002. K.A.C. and C.N.W. acknowledge support from the TESS mission via subaward s3449 from MIT. D.R.C. and C.A.C. acknowledge support from NASA through the XRP grant No. 18-2XRP18_2-0007. C.A.C. acknowledges that this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S.Z. and A.B. acknowledge support from the Israel Ministry of Science and Technology (grant No. 3-18143). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant No. PDR T.0120.21. The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant No. T.0109.20 and by the Francqui Foundation. H.P.O.'s contribution has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation under grant Nos. 51NF40_182901 and 51NF40_205606. F.J.P. acknowledges financial support from the grant No. CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. A.J. acknowledges support from ANID—Millennium Science Initiative—ICN12_009 and from FONDECYT project 1210718. Z.L.D. acknowledges the MIT Presidential Fellowship and that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1745302. P.R. acknowledges support from the National Science Foundation grant No. 1952545. This work is partly supported by JSPS KAKENHI grant Nos. JP17H04574, JP18H05439, JP21K20376; JST CREST grant No. JPMJCR1761; and Astrobiology Center SATELLITE Research project AB022006. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. D.D. acknowledges support from TESS Guest Investigator Program grant Nos. 80NSSC22K1353, 80NSSC22K0185, and 80NSSC23K0769. A.B. acknowledges the support of M.V. Lomonosov Moscow State University Program of Development. T.D. was supported in part by the McDonnell Center for the Space Sciences. V.K. acknowledges support from the youth scientific laboratory project, topic FEUZ-2020-0038.JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature Teq and planetary radius Rp and are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Peer reviewe
    corecore