167 research outputs found

    Fermion Helicity Flip in Weak Gravitational Fields

    Full text link
    The helicity flip of a spin-12{\textstyle \frac{1}{2}} Dirac particle interacting gravitationally with a scalar field is analyzed in the context of linearized quantum gravity. It is shown that massive fermions may have their helicity flipped by gravity, in opposition to massless fermions which preserve their helicity.Comment: RevTeX 3.0, 8 pages, 3 figures (available upon request), Preprint IFT-P.013/9

    New thought experiment to test the generalized second law of thermodynamics

    Full text link
    We propose an extension of the original thought experiment proposed by Geroch, which sparked much of the actual debate and interest on black hole thermodynamics, and show that the generalized second law of thermodynamics is in compliance with it.Comment: 4 pages (revtex), 3 figure

    Is the equivalence for the response of static scalar sources in the Schwarzschild and Rindler spacetimes valid only in four dimensions?

    Full text link
    It was shown recently that in four dimensions scalar sources with fixed proper acceleration minimally coupled to a massless Klein-Gordon field lead to the same responses when they are (i) uniformly accelerated in Minkowski spacetime (in the inertial vacuum) and (ii) static in the Schwarzschild spacetime (in the Unruh vacuum). Here we show that this equivalence is broken if the spacetime dimension is more than four.Comment: 4 pages, 1 figur

    Sudden change in quantum and classical correlations and the Unruh effect

    Full text link
    We use the Unruh effect to analyze the dynamics of classical and quantum correlations for a two-qubit system when one of them is uniformly accelerated for a finite amount of proper time. We show that the quantum correlation is completely destroyed in the limit of infinite acceleration, while the classical one remains nonzero. In particular, we show that such correlations exhibit the so-called sudden-change behavior as a function of acceleration. Eventually, we discuss how our results can be interpreted when the system lies in the vicinity of the event horizon of a Schwarzschild black hole.Comment: Published versio

    Particle creation due to tachyonic instability in relativistic stars

    Get PDF
    Dense enough compact objects were recently shown to lead to an exponentially fast increase of the vacuum energy density for some free scalar fields properly coupled to the spacetime curvature as a consequence of a tachyonic-like instability. Once the effect is triggered, the star energy density would be overwhelmed by the vacuum energy density in a few milliseconds. This demands that eventually geometry and field evolve to a new configuration to bring the vacuum back to a stationary regime. Here, we show that the vacuum fluctuations built up during the unstable epoch lead to particle creation in the final stationary state when the tachyonic instability ceases. The amount of created particles depends mostly on the duration of the unstable epoch and final stationary configuration, which are open issues at this point. We emphasize that the particle creation coming from the tachyonic instability will occur even in the adiabatic limit, where the spacetime geometry changes arbitrarily slowly, and therefore is quite distinct from the usual particle creation due to the change in the background geometry.Comment: 12 pages, 2 figures, discussion improved: paragraph added at the end of Sec. V B (published version

    Influence of detector motion in entanglement measurements with photons

    Full text link
    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step towards the implementation of quantum information protocols in a global scale

    Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect

    Get PDF
    We investigate the weak decay of uniformly {\em accelerated protons} in the context of {\em standard} Quantum Field Theory. Because the mean {\em proper} lifetime of a particle is a scalar, the same value for this observable must be obtained in the inertial and coaccelerated frames. We are only able to achieve this equality by considering the Fulling-Davies-Unruh effect. This reflects the fact that the Fulling-Davies-Unruh effect is mandatory for the consistency of Quantum Field Theory. There is no question about its existence provided one accepts the validity of standard Quantum Field Theory in flat spacetime.Comment: 4 pages (revtex), 1 figure, to appear in Phys. Rev. Let

    Awaking the vacuum in relativistic stars

    Full text link
    Void of any inherent structure in classical physics, the vacuum has revealed to be incredibly crowded with all sorts of processes in relativistic quantum physics. Yet, its direct effects are usually so subtle that its structure remains almost as evasive as in classical physics. Here, in contrast, we report on the discovery of a novel effect according to which the vacuum is compelled to play an unexpected central role in an astrophysical context. We show that the formation of relativistic stars may lead the vacuum energy density of a quantum field to an exponential growth. The vacuum-driven evolution which would then follow may lead to unexpected implications for astrophysics, while the observation of stable neutron-star configurations may teach us much on the field content of our Universe.Comment: To appear in Phys. Rev. Let

    Dyonic Kerr-Newman black holes, complex scalar field and Cosmic Censorship

    Full text link
    We construct a gedanken experiment, in which a weak wave packet of the complex massive scalar field interacts with a four-parameter (mass, angular momentum, electric and magnetic charges) Kerr-Newman black hole. We show that this interaction cannot convert an extreme the black hole into a naked sigularity for any black hole parameters and any generic wave packet configuration. The analysis therefore provides support for the weak cosmic censorship conjecture.Comment: Refined emphasis on the weak cosmic censorship conjecture, conclusions otherwise unchanged. Also, two sections merged, literature review updated, references added, a few typos correcte
    • …
    corecore