5 research outputs found

    The origin of upper Precambrian diamictites, northern Norway: a case study applicable to diamictites in general

    Get PDF
    Upper Precambrian diamictites in Varangerfjorden (northern Norway) have been examined for evidence of origin, whether glaciogenic, gravity flow or polygenetic. Studies of geomorphology, sedimentology and surface microtextures on quartz sand grains are integrated to provide multiple pieces of evidence for the geological agents responsible for the origin of the diamictites. The documented sedimentary and erosional structures, formerly interpreted in a glaciogenic context (e.g., diamict structure, pavements and striations) have been reanalysed. Field and laboratory data demonstrate that, contrary to conclusions reached in many earlier studies, the diamictites and adjacent deposits did not originate from glaciogenic processes. Evidence from macrostructures may occasionally be equivocal or can be interpreted as representing reworked, glacially derived material. Evidence from surface microtextures, from outcrops which are believed to exhibit the most unequivocal signs for glaciation, display no imprint at all of glaciogenic processes, and a multicyclical origin of the deposits can be demonstrated. The geological context implies (and no geological data contradict this) an origin by gravity flows, possibly in a submarine fan environment. This reinterpretation of the diamictites in northern Norway may imply that the palaeoclimatological hypothesis of a deep frozen earth during parts of the Neoproterozoic has to be revised

    Field evidence suggests that the Palaeoproterozoic Gowganda Formation in Canada is non-glacial in origin

    No full text
    During more than a century since its original identification, the Gowganda Formation in Ontario (Canada) has gradually been reinterpreted from representing mainly subglacial tillites to secondary gravity flow and glaciomarine deposits. The main pieces of geological evidence advanced in favour of glaciation in recent articles are outsized clasts that have been interpreted as dropstones and patches of diamictites in a single small-sized area at Cobalt which is still interpreted as displaying subglacial basal tillites. The present research considers field evidence in the Gowganda Formation in the light of more recent work on gravity flows linked to tectonics. Detailed studies have demonstrated that the clasts which are interpreted to be dropstones rarely penetrate laminae and are commonly draped by sediments the appearance of which is similar to lonestones in gravity flows. The “subglacial area” at Cobalt displays evidence of tectonics and gravity flows, which can be traced from the underlying bedrock, and then further in the overlying sequence of diamictites and rhythmites. The sum of geological features displays appearances at odds with a primary glaciogenic origin, and there is no unequivocal evidence present of glaciation. The data indicate deposition by non-glaciogenic gravity flows, including cohesive debris flows for the more compact units, probably triggered by tectonic displacements

    Patterns, processes and models – an analytical review of current ambiguous interpretations of the evidence for pre-Pleistocene glaciations

    No full text
    Models (paradigms) and former interpretations have often been presupposed when conducting field research. In the 19th century diamictites were for the first time interpreted to have originated from ancient glaciations. These interpretations have to a large part prevailed in the geological community, although there has been much progress in the areas of sedimentology, glaciology and physical geography. The present work is an effort to find criteria which most clearly discriminate between geological features produced by different processes, mainly glaciation and mass flow, the latter predominantly sediment gravity flows. Geological features which have been interpreted to have formed by glaciation throughout pre-Pleistocene Earth history are compared to similar-appearing geological features formed by mass flow and tectonics, so as to uncover variations in the appearance between features resulting from these different processes. The starting point for this comparison is documentation of the appearance of Quaternary products of erosion and deposition, in order to discern the origin of older formations. It is shown that the appearance and origin of pavements, dropstones, valleys, small-scale landforms, surface microtextures and most other geological features may in some cases be equivocal, but in others the details are indicative of the process which generated the feature. Detailed geological field data which have been compiled by geologists from outcrops of pre-Pleistocene strata, more often than is considered in most papers, commonly point to a mass flow origin, mainly a sediment gravity flow origin, rather than a glaciogenic origin. A process of multiple working hypotheses or interpretations is therefore advocated, based mainly on a comparison of the appearance of features formed by different geological processes documented from different research disciplines. Instead of starting with current interpretations or models, this multiple working hypothesis or methodology helps to avoid confirmation bias and jumping to conclusions

    Reconsidering the glaciogenic origin of Gondwana diamictites of the Dwyka Group, South Africa

    No full text
    The Gondwana Late Palaeozoic Ice Age is probably best represented by the Dwyka Group in South Africa. Striated and grooved surfaces or pavements are commonly considered to have formed subglacially, as are diamictites which have been interpreted as in-situ or reworked tillites. These interpretations were tested by investigation of outcrops in formerly well-studied areas, throughout South Africa. Detailed analyses have focused on striated surfaces/pavements and surface microtextures on quartz sand grains in diamictites. The sedimentological context of four pavements, interpreter to be glaciogenic, display features commonly associated with sediment gravity flows, rather than glaciation. A total of 4,271 quartz sand grains were subsampled from outcrops that are considered mainly to be tillites formed by Continental glaciation. These grains, analysed by SEM, do not demonstrate the characteristic surface microtexture combinations of fracturing and irregular abrasion associated with Quaternary glacial deposits, but mainly a mix of surface microtextures associated with multicyclical grains. The Dwyka Group diamictites warrant reinterpretation as non-glacial sediment gravity flow deposits
    corecore