4 research outputs found

    Brain herniation in a patient with apparently normal intracranial pressure: a case report

    Get PDF
    Introduction Intracranial pressure monitoring is commonly implemented in patients with neurologic injury and at high risk of developing intracranial hypertension, to detect changes in intracranial pressure in a timely manner. This enables early and potentially life-saving treatment of intracranial hypertension. Case presentation An intraparenchymal pressure probe was placed in the hemisphere contralateral to a large basal ganglia hemorrhage in a 75-year-old Caucasian man who was mechanically ventilated and sedated because of depressed consciousness. Intracranial pressures were continuously recorded and never exceeded 17 mmHg. After sedation had been stopped, our patient showed clinical signs of transtentorial brain herniation, despite apparently normal intracranial pressures (less than 10 mmHg). Computed tomography revealed that the size of the intracerebral hematoma had increased together with significant unilateral brain edema and transtentorial herniation. The contralateral hemisphere where the intraparenchymal pressure probe was placed appeared normal. Our patient underwent emergency decompressive craniotomy and was tracheotomized early, but did not completely recover. Conclusions Intraparenchymal pressure probes placed in the hemisphere contralateral to an intracerebral hematoma may dramatically underestimate intracranial pressure despite apparently normal values, even in the case of transtentorial brain herniation

    Assessment of anterior thigh muscle size and fat infiltration using single-slice CT imaging versus automated MRI analysis in adults

    No full text
    Objectives: We examined the longitudinal and cross- sectional relationship between automated MRI-analysis and single-slice axial CT imaging for determining muscle size and muscle fat infiltration (MFI) of the anterior thigh. Methods: Twenty-two patients completing sex-hormone treatment expected to result in muscle hypertrophy (n = 12) and atrophy (n = 10) underwent MRI scans using 2-point Dixon fat/water-separated sequences and CT scans using a system operating at 120 kV and a fixed flux of 100 mA. At baseline and 12 months after, auto- mated volumetric MRI analysis of the anterior thigh was performed bilaterally, and fat-free muscle volume and MFI were computed. In addition, cross-sectional area (CSA) and radiological attenuation (RA) (as a marker of fat infiltration) were calculated from single slice axial CT-images using threshold-assisted planimetry. Linear regression models were used to convert units. Results: There was a strong correlation between MRI- derived fat-free muscle volume and CT-derived CSA (R = 0.91), and between MRI-derived MFI and CT-derived RA (R = −0.81). The 95% limits of agreement were ±0.32 L for muscle volume and ±1.3% units for %MFI. The longi- tudinal change in muscle size and MFI was comparable across imaging modalities. Conclusions: Both automated MRI and single-slice CT-imaging can be used to reliably quantify anterior thigh muscle size and MFI. Advances in knowledge: This is the first study examining the intermodal agreement between automated MRI anal- ysis and CT-image assessment of muscle size and MFI in the anterior thigh muscles. Our results support that both CT- and MRI-derived measures of muscle size and MFI can be used in clinical settings

    Acyl-Lipid Metabolism

    No full text
    corecore