27 research outputs found

    Modern NMR spectroscopy of proteins and peptides in solution and its relevance to drug design

    Full text link
    The knowledge of the three-dimensional (3D) structures and conformational dynamics of proteins and peptides is important for the understanding of biochemical and genetic data derived for these molecules. This understanding can ultimately be of help in drug design. We describe here the role of Nuclear Magnetic Resonance (NMR) spectroscopy in this process for three distinct situations: for small proteins, where relatively simple NMR methods can be used for full 3D structure determination; for larger proteins that require multinuclear multidimensional NMR but for which full 3D structures can still be obtained; and for small peptides that are studied in interaction with macromolecules (receptors) using specialized NMR techniques. A fourth situation, pertaining to large systems where only partial structural information can be obtained from NMR data, is briefly discussed. Molecules of interest to the biomedical field (C5a and stromelysin) are discussed as examples.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43356/1/11091_2005_Article_BF02174537.pd

    Insights from knock-out models concerning postischemic release of TNFalpha from isolated mouse hearts.

    No full text
    The inflammatory cytokine tumor necrosis factor alpha (TNFalpha) is controversially discussed in ischemia/reperfusion damage of the heart. Purpose of this study was to elucidate cellular sources of TNFalpha and parameters which possibly influence its release in the heart following ischemia. Isolated hearts of mice were subjected to 15 min of global ischemia and 90 min of reperfusion. We employed hearts of various mice knock-out strains (interleukin-6(-/-), matrix metalloprotease-7(-/-), mast-cell deficient WBB6F1-Kit(W)/Kit(W-v), TNF-R1(-/-)) and wildtype mice, the latter perfused without and with infusion of cycloheximide or TNFalpha-cleaving-enzyme inhibitor (TAPI-2). Normoxic control hearts showed basal release of TNFalpha during the whole experiment. Immunohistology identified cardiac mast cells, macrophages and endothelial cells as main sources. TNFalpha release was stimulated during postischemic reperfusion, occurring in a two-peak pattern: directly after ischemia (0-10 min) and again after 60-90 min. The first peak mainly reflects tissue washout of TNFalpha accumulated during ischemia. The second, protracted peak arose continuously from the basal level and was abolished by protein synthesis inhibitor cycloheximide. Both properties are characteristic for de novo synthesis of TNFalpha, e.g., in cardiac muscle cells. However, immunohistological staining for TNFalpha failed in cardiomyocytes after 90 min of reperfusion. In contrast to hearts of TNF-R1(-/-) and Kit(W/W-v)-mice, those of IL-6(-/-) and MMP-7(-/-) mice lacked the late TNFalpha peak. TAPI did not suppress release of TNFalpha. While autostimulation via TNF-R1 also does not seem obligatory and mast cell can be ignored as source of the second peak, IL-6 may support de novo synthesis of TNFalpha. Additionally, TNFalpha release may essentially involve cleavage of membrane bound TNFalpha by MMP-7

    Avaliação das metaloproteinases de matriz -2 e -9 em gatos com desmineralização óssea secundária à tirotoxicose induzida Evaluation of matrix metalloproteinases -2 and -9 in cats under bone demineralization secondary to induced thyrotoxicosis

    No full text
    Observou-se significativo aumento de atividade das formas ativas das metaloproteinases -2 e -9 em gatos com tirotoxicose induzida e desmineralização óssea. As formas pró e intermediária da metaloproteinase -2 elevaram-se com 14 dias de administração hormonal, porém, posteriormente, houve uma tendência de queda. Observou-se correlação negativa entre a forma ativa das metaloproteinases de matriz -2 e -9 e a densidade mineral óssea da extremidade distal do rádio. Os resultados sugerem aumento da degradação da matriz colágena secundária com a elevação dos hormônios tiroidianos.<br>Significant increase of activity of active forms of matrix metalloproteinases -2 and -9 in cats under induced thyrotoxicosis and bone demineralization was observed. Pro and intermediated forms of matrix metalloproteinases -2 and -9 increased at 14 days of hormonal treatment, followed by decrease tendency. A negative correlation between active forms of matrix metalloproteinases -2 and -9 and bone mineral density of radius distal extremity was also observed. The results suggest an increase of collagen matrix degradation secondary to high levels of thyroid hormones
    corecore