15 research outputs found

    Implementation of Population Algorithms to Minimize Power Losses and Cable Cross-Section in Power Supply System

    Get PDF
    The article dues to the arrangement of the reactive power sources in the power grid to reduce the active power losses in transmission lines and minimize cable cross-sections of the lines. The optimal arrangement is considered from two points of view. In the first case, it is possible to minimize the active power losses only. In the second case, it is possible to change the cross-sections of the supply lines to minimize both the active power losses and the volume of the cable lines. The sum of the financial cost of the active power losses, the capital investment to install the deep reactive power compensation, and cost of the cable volume is introduced as the single optimization criterion. To reduce the losses, the deep compensation of reactive power sources in nodes of the grid are proposed. This optimization problem was solved by the Genetic algorithm and the Particle Swarm optimization algorithm. It was found out that the deep compensation allows minimizing active power losses the cable cross-section. The cost-effectiveness of the suggested method is shown. It was found out that optimal allocation of the reactive power sources allows increasing from 9% to 20% the financial expenses for the enterprise considered

    Swarm intelligence algorithms for the problem of the optimal placement and operation control of reactive power sources into power grids

    Full text link
    Deep reactive power compensation allows for reduction of active power losses in transmission lines of power supply systems. The efficiency of the compensation depends on the allocation of reactive power compensation units (RPCUs) at the nodes of a network. In general, investigations devoted to the study of optimal allocation of the compensation units have revealed that it is a static and deterministic optimization problem that can be solved by heuristic methods. However, in real systems, it is reasonable to consider such optimization problems, taking into account the dynamic and stochastic properties of the problems. These properties are the result of equipment failures and operational changes in technical systems. In addition, optimizing the allocation of the compensation units is the NP-hard multifactor problem. Under these circumstances, it is advisable to use the swarm intelligence algorithms. Swarm intelligence is a relatively new approach to solving the optimization problem, which takes inspiration from the behaviour of ants, birds, and other animals. Advantages of swarm algorithms are most evident if problems involve the dynamic or stochastic nature of the objective function and constraints. Contrary to a number of similar studies, this research considers the problem of the optimal allocation of compensation units as a dynamic problem, taking into account the possible random failures of the compensation equipment. The optimization problem has been solved by two Swarm Intelligence algorithms (the Particle Swarm optimization and the Artificial Bee Colony optimization) and Genetic algorithms. It has been aimed at comparing the effectiveness of the algorithms for solving such problems. It was found that swarm algorithms could be successfully applied in the operation control of compensation units in real-time. Β© 2017 WIT Press

    Application of swarm intelligence algorithms to energy management of prosumers with wind power plants

    Get PDF
    The paper considers the problem of optimal control of a prosumer with a wind power plant in smart grid. It is shown that control can be performed in non-deterministic conditions due to the impossibility of accurate forecasting of the generation from renewable plants. A control model based on a priority queue of logical rules with structural-parametric optimization is applied. The optimization problem is considered from a separate prosumer, not from the entire distributed system. The solution of the optimization problem is performed by three swarm intelligence algorithms. Computational experiments were carried out for models of wind energy systems on Russky Island and Popov Island (Far East). The results obtained showed the high effectiveness of the swarm intelligence algorithms that demonstrated reliable and fast convergence to the global extreme of the optimization problem under different scenarios and parameters of prosumers. Also, we analyzed the influence of accumulator capacity on the variability of prosumers. The variability, in turn, affects the increase of the prosumer benefits from the interaction with the external global power system and neighboring prosumers

    Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources

    Full text link
    This work aims to analyze and manage the optimal power consumption of the autonomous power system within the Pamir region of Republic of Tajikistan, based on renewable energy sources. The task is solved through linear programming methods, production rules and mathematical modeling of power consumption modes by generating consumers. It is assumed that power consumers in the considered region have an opportunity to independently cover energy shortage by installing additional generating energy sources. The objective function is to minimize the financial expenses for own power consumption, and to maximize them from both the export and redistribution of power flows. In this study, the optimal ratio of power generation by alternative sources from daily power consumption for winter was established to be hydroelectric power plants (94.8%), wind power plant (3.8%), solar photovoltaic power plant (0.5%) and energy storage (0.8%); while it is not required in summer due to the ability to ensure the balance of energy by hydroelectric power plants. As a result, each generating consumer can independently minimize their power consumption and maximize profit from the energy exchange with other consumers, depending on the selected energy sources, thus becoming a good example of carbon-free energy usage at the micro-and mini-grid level. Β© 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Improving accuracy and generalization performance of small-size recurrent neural networks applied to short-term load forecasting

    Full text link
    The load forecasting of a coal mining enterprise is a complicated problem due to the irregular technological process of mining. It is necessary to apply models that can distinguish both cyclic components and complex rules in the energy consumption data that reflect the highly volatile technological process. For such tasks, Artificial Neural Networks demonstrate advanced performance. In recent years, the effectiveness of Artificial Neural Networks has been significantly improved thanks to new state-of-the-art architectures, training methods and approaches to reduce overfitting. In this paper, the Recurrent Neural Network architecture with a small-size model was applied to the short-term load forecasting of a coal mining enterprise. A single recurrent model was developed and trained for the entire four-year operational period of the enterprise, with significant changes in the energy consumption pattern during the period. This task was challenging since it required high-level generalization performance from the model. It was shown that the accuracy and generalization properties of small-size recurrent models can be significantly improved by the proper selection of the hyper-parameters and training method. The effectiveness of the proposed approach was validated using a real-case dataset. Β© 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics

    Full text link
    This manuscript addresses the problem of technical state assessment of power transformers based on data preprocessing and machine learning. The initial dataset contains diagnostics results of the power transformers, which were collected from a variety of different data sources. It leads to dramatic degradation of the quality of the initial dataset, due to a substantial number of missing values. The problems of such real-life datasets are considered together with the performed efforts to find a balance between data quality and quantity. A data preprocessing method is proposed as a two-iteration data mining technology with simultaneous visualization of objects’ observability in a form of an image of the dataset represented by a data area diagram. The visualization improves the decision-making quality in the course of the data preprocessing procedure. On the dataset collected by the authors, the two-iteration data preprocessing technology increased the dataset filling degree from 75% to 94%, thus the number of gaps that had to be filled in with the synthetic values was reduced by 2.5 times. The processed dataset was used to build machine-learning models for power transformers’ technical state classification. A comparative analysis of different machine learning models was carried out. The outperforming efficiency of ensembles of decision trees was validated for the fleet of high-voltage power equipment taken under consideration. The resulting classification-quality metric, namely, F1-score, was estimated to be 83%. Β© 2022 by the authors.Ministry of Education and Science of the Russian Federation,Β MinobrnaukaThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged

    ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ точности прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ фотоэлСктричСских станций Π½Π° основС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² k-срСдних ΠΈ k-Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй

    Get PDF
    Renewable energy sources (RES) are seen as a means of the fuel and energy complex carbon footprint reduction but the stochastic nature of generation complicates RES integration with electric power systems. Therefore, it is necessary to develop and improve methods for forecasting of the power plants generation using the energy of the sun, wind and water flows. One of the ways to improve the accuracy of forecast models is a deep analysis of meteorological conditions as the main factor affecting the power generation. In this paper, a method for adapting of forecast models to the meteorological conditions of photovoltaic stations operation based on machine learning algorithms was proposed and studied. In this case, unsupervised learning is first performed using the k-means method to form clusters. For this, it is also proposed to use studied the feature space dimensionality reduction algorithm to visualize and estimate the clustering accuracy. Then, for each cluster, its own machine learning model was trained for generation forecasting and the k-nearest neighbours algorithm was built to attribute the current conditions at the model operation stage to one of the formed clusters. The study was conducted on hourly meteorological data for the period from 1985 to 2021. A feature of the approach is the clustering of weather conditions on hourly rather than daily intervals. As a result, the mean absolute percentage error of forecasting is reduced significantly, depending on the prediction model used. For the best case, the error in forecasting of a photovoltaic plant generation an hour ahead was 9 %.ВозобновляСмыС источники энСргии Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ срСдство сниТСния ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ слСда Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-энСргСтичСского комплСкса, ΠΏΡ€ΠΈ этом стохастичСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ослоТняСт ΠΈΡ… ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с элСктроэнСргСтичСскими систСмами. Π­Ρ‚Π° сущСствСнная Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΡΡ‚ΡŒ обусловливаСт Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ элСктричСских станций, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… ΡΠ½Π΅Ρ€Π³ΠΈΡŽ солнца, Π²Π΅Ρ‚Ρ€Π° ΠΈ Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ². НаиболСС Π²Π°ΠΆΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ точности ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, являСтся Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· мСтСорологичСских условий ΠΊΠ°ΠΊ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Π²Π»ΠΈΡΡŽΡ‰Π΅Π³ΠΎ Π½Π° Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ элСктроэнСргии. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΈ исслСдован ΠΌΠ΅Ρ‚ΠΎΠ΄ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΠΎΠ΄ мСтСорологичСскиС условия Ρ€Π°Π±ΠΎΡ‚Ρ‹ фотоэлСктричСских станций Π½Π° Π±Π°Π·Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² машинного обучСния. ΠŸΡ€ΠΈΒ ΡΡ‚ΠΎΠΌ Π²Π½Π°Ρ‡Π°Π»Π΅ выполняСтся ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±Π΅Π· учитСля ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ k-срСдних для формирования кластСров. Для этой Π·Π°Π΄Π°Ρ‡ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈ исслСдовано использованиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° пониТСния размСрности пространства ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² для Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ точности кластСризации. Π—Π°Ρ‚Π΅ΠΌ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ кластСра построСна своя модСль машинного обучСния для формирования ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΎΠ² ΠΈΒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй для отнСсСния Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΡ… условий Π½Π° этапС эксплуатации ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ· сформированных кластСров. ИсслСдованиС Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° почасовых мСтСорологичСских Π΄Π°Π½Π½Ρ‹Ρ… Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 1985 ΠΏΠΎ 2021 Π³. Одной ΠΈΠ· особСнностСй этого ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° являСтся кластСризация мСтСоусловий Π½Π° часовых, Π° Π½Π΅ суточных ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ…. Π’Β Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ срСдний ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ошибки прогнозирования сущСствСнно сниТаСтся Π² зависимости ΠΎΡ‚Β ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ прогнозирования. Для Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° ошибка прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ фотоэлСктричСской станции Π½Π° час Π²ΠΏΠ΅Ρ€Π΅Π΄ составила 9Β %

    ΠžΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ скорости Π²Π΅Ρ‚Ρ€Π° для Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΉ энСргСтичСской установки тяговой ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ подстанции

    Get PDF
    Currently, the prospects of creating hybrid power assemblies using renewable energy sources, including wind energy, and energy storage systems based on hydrogen energy technologies are being considered. To control such an energy storage system, it is necessary to perform operational renewable sources generation forecasting, particularly forecasting of wind power assemblies. Their production depends on the speed and direction of the wind. The article presents the results of solving the problem of operational forecasting of wind speed for a hybrid power assembly project aimed at increasing the capacity of the railway section between Yaya and Izhmorskaya stations (Kemerovo region of the Russian Federation). Hourly data of wind speeds and directions for 15 years have been analyzed, a neural network model has been built, and a compact architecture of a multilayer perceptron has been proposed for short-term forecasting of wind speed and direction for 1 and 6 hours ahead. The model that has been developed allows minimizing the risks of overfitting and loss of forecasting accuracy due to changes in the operating conditions of the model over time. A specific feature of this work is the stability investigation of the model trained on the data of long-term observations to long-term changes, as well as the analysis of the possibilities of improving the accuracy of forecasting due to regular further training of the model on newly available data. The nature of the influence of the size of the training sample and the self-adaptation of the model on the accuracy of forecasting and the stability of its work on the horizon of several years has been established. It is shown that in order to ensure high accuracy and stability of the neural network model of wind speed forecasting, long-term meteorological observations data are required.Π’ настоящСС врСмя Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ пСрспСктивы создания Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… энСргСтичСских установок с использованиСм возобновляСмых источников энСргии, Π² Ρ‚ΠΎΠΌ числС энСргии Π²Π΅Ρ‚Ρ€Π°, ΠΈ систСм накоплСния энСргии Π½Π° Π±Π°Π·Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ энСргСтики. Для управлСния Ρ‚Π°ΠΊΠΎΠΉ систСмой накоплСния энСргии Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΎΡ‚ возобновляСмых источников, Π² частности Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹Ρ… энСргСтичСских установок. Π˜Ρ… Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° зависит ΠΎΡ‚ скорости ΠΈ направлСния Π²Π΅Ρ‚Ρ€Π°. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ прогнозирования скорости Π²Π΅Ρ‚Ρ€Π° для ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ энСргСтичСской установки, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ пропускной способности ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠ³ΠΎ участка ΠΌΠ΅ΠΆΠ΄Ρƒ станциями Яя ΠΈ Π˜ΠΆΠΌΠΎΡ€ΡΠΊΠ°Ρ (ΠšΠ΅ΠΌΠ΅Ρ€ΠΎΠ²ΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ). ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ почасовыС Π΄Π°Π½Π½Ρ‹Π΅ скоростСй ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π²Π΅Ρ‚Ρ€Π° Π·Π° 15 Π»Π΅Ρ‚, построСна нСйросСтСвая модСль ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° компактная Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° многослойного ΠΏΠ΅Ρ€Ρ†Π΅ΠΏΡ‚Ρ€ΠΎΠ½Π° для краткосрочного прогнозирования скорости ΠΈ направлСния Π²Π΅Ρ‚Ρ€Π° Π½Π° 1 ΠΈ 6 Ρ‡ Π²ΠΏΠ΅Ρ€Π΅Π΄. Разработанная модСль позволяСт ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ риски пСрСобучСния ΠΈ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ точности прогнозирования ΠΈΠ·-Π·Π° измСнСния условий Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² исслСдовании устойчивости ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΠ±ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… наблюдСний, ΠΊ долгосрочным измСнСниям, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π°Π½Π°Π»ΠΈΠ·Π΅ возмоТностСй ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ точности прогнозирования Π·Π° счСт рСгулярного дообучСния ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° вновь ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ…. УстановлСн Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ влияния Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ ΠΈ самоадаптации ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ прогнозирования ΠΈ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π΅Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π΅ Π² нСсколько Π»Π΅Ρ‚. Показано, Ρ‡Ρ‚ΠΎ для обСспСчСния высокой точности ΠΈ устойчивости нСйросСтСвой ΠΌΠΎΠ΄Π΅Π»ΠΈ прогнозирования скорости Π²Π΅Ρ‚Ρ€Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… мСтСорологичСских наблюдСний

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΠΈ сСти с Π’Π˜Π­-Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Π½Π° основС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ гСнСтичСского Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°

    Get PDF
    The article presents an adaptive genetic algorithm developed by the authors, which makes it possible to optimize the topology of a power network with distributed generation. The optimization was based on bioinspired methods. The objects of the study were a 15-node circuit of a power net-work with photovoltaic stations and a 14-node IEEE augmented circuit with distributed generation sources (three wind farms and two photovoltaic plants). The simulation of the modes of electric power systems was performed using the Pandapower library for the Python programming language, which is in the public domain. Three types of electric load of consumers were considered, reflecting the natures of electricity consumption in the nodes of real electric power systems, the results of numerical studies were presented. The proposed genetic algorithm used two different functions of interbreeding, the function of mutation, selection of the best individuals and mass mutation (complete population renewal). At the end of each iteration of the algorithm operation, statistical dependencies were de-rived that characterized its work: the best (minimal losses) and average adaptability in the population, a list of the best individuals throughout all iterations, etc. The verification was carried out in comparison with the results obtained by a complete search of possible radial configurations of the system, and it showed that the developed genetic algorithm had fast convergence, high accuracy and was able to work correctly with different configurations of electrical circuits, generation and load structures. The algorithm can be used in conjunction with renewable energy sources generation forecasting systems for the day ahead when planning the operating modes of power units in order to minimize the costs of covering electricity losses and improve the quality of electricity supplied.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹ΠΉ гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡŽ элСктричСской сСти с распрСдСлСнной Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Π½Π° основС биоинспирированных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ исслСдования – 15-узловая схСма элСктричСской сСти с фотоэлСктричСскими станциями ΠΈ 14-узловая дополнСнная схСма IEEE с источниками распрСдСлСнной Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ (Ρ‚Ρ€ΠΈ Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹Π΅ ΠΈ Π΄Π²Π΅ фотоэлСктричСскиС станции). ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² элСктроэнСргСтичСских систСм Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ с использованиСм находящСйся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ Pandapower для языка программирования Python. РассмотрСны Ρ‚Ρ€ΠΈ Ρ‚ΠΈΠΏΠ° элСктричСской Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ потрСблСния элСктроэнСргии Π² ΡƒΠ·Π»Π°Ρ… Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… элСктроэнСргСтичСских систСм, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнных исслСдований. Π’ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌ гСнСтичСском Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ Π΄Π²Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ скрСщивания, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΎΡ‚Π±ΠΎΡ€Π° Π»ΡƒΡ‡ΡˆΠΈΡ… ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΠΎΠ² ΠΈ массовой ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ (ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ обновлСния популяции). Π’ ΠΊΠΎΠ½Ρ†Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° выводятся статистичСскиС зависимости, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρƒ: Π»ΡƒΡ‡ΡˆΠ°Ρ (ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ) ΠΈ срСдняя ΠΏΡ€ΠΈΡΠΏΠΎΡΠΎΠ±Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π² популяции, список Π»ΡƒΡ‡ΡˆΠΈΡ… ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΠΎΠ² Π½Π° протяТСнии всСх ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΉ ΠΈ Ρ‚. Π΄. ВСрификация ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π² сравнСнии с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Π±ΠΎΡ€Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΉ систСмы, ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ быстрой ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ, высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ способСн ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… конфигурациях схСм элСктричСских сСтСй, структурах Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ. Алгоритм ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ совмСстно с систСмами прогнозирования Π’Π˜Π­-Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π° сутки Π²ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΡ€ΠΈ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΡΠ½Π΅Ρ€Π³ΠΎΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ с Ρ†Π΅Π»ΡŒΡŽ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠ΅ΠΊ Π½Π° ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ элСктроэнСргии ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ качСства отпускаСмой элСктроэнСргии
    corecore