5 research outputs found
Converting text to structured models of healthcare services
The paper presents a concise method for transforming textual
representations of healthcare services, to a structured, semantically unambiguous modelling language. Employing the method can create structured models of the services that can then be analysed either manually or automatically
Structuring Clinical Decision Support rules for drug safety using Natural Language Processing
Drug safety is an important aspect in healthcare, resulting in a number of inadvertent events, which may harm the patients. IT based Clinical Decision Support (CDS), integrated in electronic-prescription or Electronic Health Records (EHR) systems, can provide a means for checking prescriptions for errors. This requires expressing prescription guidelines in a way that can be interpreted by IT systems. The paper uses Natural Language Processing (NLP), to interpret drug guidelines by the UK NICE BNF offered in free text. The employed NLP component, MetaMap, identifies the concepts in the instructions and interprets their semantic meaning. The UMLS semantic types that correspond to these concepts are then processed, in order to understand the concepts that are needed to be implemented in software engineering for a CDS engine
OSSMETER: Automated measurement and analysis of open source software
International audienceDeciding whether an open source software (OSS) meets the requiredstandards for adoption in terms of quality, maturity, activity of development anduser support is not a straightforward process. It involves analysing various sourcesof information, including the project’s source code repositories, communicationchannels, and bug tracking systems. OSSMETER extends state-of-the-art techniquesin the field of automated analysis and measurement of open-source software(OSS), and develops a platform that supports decision makers in the processof discovering, comparing, assessing and monitoring the health, quality, impactand activity of opensource software. To achieve this, OSSMETER computestrustworthy quality indicators by performing advanced analysis and integrationof information from diverse sources including the project metadata, source coderepositories, communication channels and bug tracking systems of OSS projects
INSAFEDARE Project: Innovative Applications of Assessment and Assurance of Data and Synthetic Data for Regulatory Decision Support
Digital health solutions hold promise for enhancing healthcare delivery and patient outcomes, primarily driven by advancements such as machine learning, artificial intelligence, and data science, which enable the development of integrated care systems. Techniques for generating synthetic data from real datasets are highly advanced and continually evolving. This paper aims to present the INSAFEDARE project's ambition regarding medical devices' regulation and how real and synthetic data can be used to check if devices are safe and effective. The project will consist of three pillars: a) assurance of new state-of-the-art technologies and approaches (such as synthetic data), which will support the validation methods as part of regulatory decision-making; b) technical and scientific, focusing on data-based safety assurance, as well as discovery, integration and use of datasets, and use of machine learning approaches; and c) delivery to practice, through co-production involving relevant stakeholders, dissemination and sustainability of the project's outputs. Finally, INSAFEDARE will develop an open syllabus and training certification for health professionals focused on quality assurance.</p
MedSecurance project: advanced security-for-safety assurance for medical device IoT (IoMT)
International audienceThe MedSecurance project focus on identifying new challenges in cyber security with focus on hardware and software medical devices in the context of emerging healthcare architectures. In addition, the project will review best practice and identify gaps in the guidance, particularly the guidance stipulated by the medical device regulation and directives. Finally, the project will develop comprehensive methodology and tooling for the engineering of trustworthy networks of inter-operating medical devices, that shall have security-for-safety by design, with a strategy for device certification and certifiable dynamic network composition, ensuring that patient safety is safeguarded from malicious cyber actors and technology "accidents"