701 research outputs found
Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid as a source
We present a method for generating solutions in some scalar-tensor theories
with a minimally coupled massless scalar field or irrotational stiff perfect
fluid as a source. The method is based on the group of symmetries of the
dilaton-matter sector in the Einstein frame. In the case of Barker's theory the
dilaton-matter sector possesses SU(2) group of symmetries. In the case of
Brans-Dicke and the theory with "conformal coupling", the dilaton- matter
sector has as a group of symmetries. We describe an explicit
algorithm for generating exact scalar-tensor solutions from solutions of
Einstein-minimally-coupled-scalar-field equations by employing the nonlinear
action of the symmetry group of the dilaton-matter sector. In the general case,
when the Einstein frame dilaton-matter sector may not possess nontrivial
symmetries we also present a solution generating technique which allows us to
construct exact scalar-tensor solutions starting with the solutions of
Einstein-minimally-coupled-scalar-field equations. As an illustration of the
general techniques, examples of explicit exact solutions are constructed. In
particular, we construct inhomogeneous cosmological scalar-tensor solutions
whose curvature invariants are everywhere regular in space-time. A
generalization of the method for scalar-tensor-Maxwell gravity is outlined.Comment: 10 pages,Revtex; v2 extended version, new parts added and some parts
rewritten, results presented more concisely, some simple examples of
homogeneous solutions replaced with new regular inhomogeneous solutions,
typos corrected, references and acknowledgements added, accepted for
publication in Phys.Rev.
Stochastic dynamics and control of a driven nonlinear spin chain: the role of Arnold diffusion
We study a chain of non-linear, interacting spins driven by a static and a
time-dependent magnetic field. The aim is to identify the conditions for the
locally and temporally controlled spin switching. Analytical and full numerical
calculations show the possibility of stochastic control if the underlying
semi-classical dynamics is chaotic. This is achievable by tuning the external
field parameters according to the method described in this paper. We show
analytically for a finite spin chain that Arnold diffusion is the underlying
mechanism for the present stochastic control. Quantum mechanically we consider
the regime where the classical dynamics is regular or chaotic. For the latter
we utilize the random matrix theory. The efficiency and the stability of the
non-equilibrium quantum spin-states are quantified by the time-dependence of
the Bargmann angle related to the geometric phases of the states.Comment: Journal-ref: to appear in J.Phys.
Phage inducible islands in the gram-positive cocci
The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci
f-Oscillators and Nonlinear Coherent States
The notion of f-oscillators generalizing q-oscillators is introduced. For
classical and quantum cases, an interpretation of the f-oscillator is provided
as corresponding to a special nonlinearity of vibration for which the frequency
of oscillation depends on the energy. The f-coherent states (nonlinear coherent
states) generalizing q-coherent states are constructed. Applied to quantum
optics, photon distribution function, photon number means, and dispersions are
calculated for the f-coherent states as well as the Wigner function and
Q-function. As an example, it is shown how this nonlinearity may affect the
Planck distribution formula.Comment: Latex, 32 pages, accepted by Physica Script
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
Circulating Cell-Free DNA in Dogs with Mammary Tumors: Short and Long Fragments and Integrity Index
Circulating cell-free DNA (cfDNA) has been considered an interesting diagnostic/prognostic plasma biomarker in tumor-bearing subjects. In cancer patients, cfDNA can hypothetically derive from tumor necrosis/apoptosis, lysed circulating cells, and some yet unrevealed mechanisms of active release. This study aimed to preliminarily analyze cfDNA in dogs with canine mammary tumors (CMTs). Forty-four neoplastic, 17 non-neoplastic disease-bearing, and 15 healthy dogs were recruited. Necrosis and apoptosis were also assessed as potential source of cfDNA on 78 CMTs diagnosed from the 44 dogs. The cfDNA fragments and integrity index significantly differentiated neoplastic versus non-neoplastic dogs (P<0.05), and allowed the distinction between benign and malignant lesions (P<0.05). Even if without statistical significance, the amount of cfDNA was also affected by tumor necrosis and correlated with tumor size and apoptotic markers expression. A significant (P<0.01) increase of Bcl-2 in malignant tumors was observed, and in metastatic CMTs the evasion of apoptosis was also suggested. This study, therefore, provides evidence that cfDNA could be a diagnostic marker in dogs carrying mammary nodules suggesting that its potential application in early diagnostic procedures should be further investigated
Motional effects of single trapped atomic/ionic qubit
We investigate theoretical decoherence effects of the motional degrees of
freedom of a single trapped atomic/ionic electronically coded qubit. For single
bit rotations from a resonant running wave laser field excitation, we found the
achievable fidelity to be determined by a single parameter characterized by the
motional states. Our quantitative results provide a useful realistic view for
current experimental efforts in quantum information and computing.Comment: 3 fig
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- …
