3 research outputs found

    Predicting epileptic seizures with a stacked long short-term memory network

    Get PDF
    Despite advancements, seizure detection algorithms are trained using only the data recorded frompast epileptic seizures. This one-dimensional approach has led to an excessive false detection rate,where common movements are incorrectly classified. Therefore, a new method of detection isrequired that can distinguish between the movements observed during a generalized tonic-clonic(GTC) seizure and common everyday activities. For this study, eight healthy participants and twodiagnosed with epilepsy simulated a series of activities that share a similar set of spatialcoordinates with an epileptic seizure. We then trained a stacked, long short-term memory (LSTM)network to classify the different activities. Results show that our network successfullydifferentiated the types of movement, with an accuracy score of 94.45%. These findings present amore sophisticated method of detection that correlates a wearers movement against 12 seizurerelated activities prior to formulating a prediction

    Automated multi-beat tissue Doppler echocardiography analysis using deep neural networks

    Get PDF
    Tissue Doppler imaging is an essential echocardiographic technique for the non-invasive assessment of myocardial blood velocity. Image acquisition and interpretation are performed by trained operators who visually localise landmarks representing Doppler peak velocities. Current clinical guidelines recommend averaging measurements over several heartbeats. However, this manual process is both time-consuming and disruptive to workflow. An automated system for accurate beat isolation and landmark identification would be highly desirable. A dataset of tissue Doppler images was annotated by three cardiologist experts, providing a gold standard and allowing for observer variability comparisons. Deep neural networks were trained for fully automated predictions on multiple heartbeats and tested on tissue Doppler strips of arbitrary length. Automated measurements of peak Doppler velocities show good Bland–Altman agreement (average standard deviation of 0.40 cm/s) with consensus expert values; less than the inter-observer variability (0.65 cm/s). Performance is akin to individual experts (standard deviation of 0.40 to 0.75 cm/s). Our approach allows for > 26 times as many heartbeats to be analysed, compared to a manual approach. The proposed automated models can accurately and reliably make measurements on tissue Doppler images spanning several heartbeats, with performance indistinguishable from that of human experts, but with significantly shorter processing time
    corecore