
ISSN 2563-7568

RESEARCH ARTICLE

Predicting Epileptic Seizures with a Stacked Long Short-
Term Memory Network

Jamie Pordoy1*, Ying Zhang1, Nasser Matoorian1, Massoud Zolgharni1

1School of Computing and Engineering, University of West London, London, England, W5 5RF, United Kingdom

Abstract

Despite advancements, seizure detection algorithms are trained using only the data recorded from
past epileptic seizures. This one-dimensional approach has led to an excessive false detection rate,
where common movements are incorrectly classified.  Therefore,  a  new method of  detection is
required that can distinguish between the movements observed during a generalized tonic-clonic
(GTC) seizure and common everyday activities. For this study, eight healthy participants and two
diagnosed  with  epilepsy  simulated  a  series  of  activities  that  share  a  similar  set  of  spatial
coordinates with an epileptic seizure. We then trained a stacked, long short-term memory (LSTM)
network  to  classify  the  different  activities.  Results  show  that  our  network  successfully
differentiated the types of movement, with an accuracy score of 94.45%. These findings present a
more sophisticated method of detection that correlates a wearers movement against 12 seizure
related activities prior to formulating a prediction.
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1. Introduction

Epilepsy is a commonly occurring neurological disorder, affecting an estimated 60 million people
(i.e., close to 1% of the global population) worldwide, with an incidence rate of 40-70 new cases for
every  100,000  adults  [1].  Symptoms  manifest  in  the  form  of  recurrent,  unprovoked  epileptic
seizures, where a hyper synchronous discharge of cortical neurons causes a paroxysmal alteration
of one’s neurologic function [2]. Epidemiological studies indicate that 20-30% of those diagnosed
will not remain in long-term remission as they become refractory to anti-epileptic drugs (AEDs),
having a form of drug resistant epilepsy (DRE) [3]. Those with DRE are at an increased risk for
early  mortality  when  compared  to  non-epileptics,  with  sudden  unexpected  death  in  epilepsy
(SUDEP) and spontaneous accidental injury documented as the preliminary causes of death [4].

Although the electroencephalogram (EEG) represents the gold standard for pre-surgical evaluation
of epilepsy, short-term monitoring, and early detection of seizure onset [5], it is impractical for use
in a non-hospital environment due to extensive operating and labour costs. Therefore, a focus on
non-invasive, non-EEG detection methods is paramount as it is the sudden, unforeseen manner by
which seizure occurs that poses one of the biggest threats to those diagnosed. If a seizures onset
can be detected pre-ictal, then patient supervision and medical intervention can be applied sooner.
This  would  reduce  the  likelihood  of  SUDEP  as  most  documented  cases  are  preceded  by  a
generalized  tonic-clonic  (GTC)  seizure  [6].  The  most  promising  method of  non-EEG detection
combines several types of sensory observation to form a multi-modal mechanism that measures
various  aspects  of  a  patient’s  motor  and autonomic  functions  [7].  Based on  the  sporadic  and
seemingly repetitive movements observed during a GTC seizure, the most promising multi-modal
systems  are  accelerometer  (ACM)  centric,  using  machine  learning  algorithms  to  analyse
differentials in velocity and direction.

1.1. Seizure Detection

A large number of studies in broader literature have validated the use of ACMs, due to their non-
invasive and non-intrusive method of detecting GTC seizures [8]. By measuring the motion and
velocity  of  patients  in  three-dimensions,  ACMs have had varied levels  of  success,  with many
studies indicating high sensitivity but low specificity when predicting seizure onset [9]. There have
been  several  studies  to  improve  the  performance  of  detection  mechanisms  centred  around
transitional accelerometry, notably the works of Van de Vel et al. [10] and Beniczky et al.  [11],
attaining sensitivity scores of 89.7% and 95.71% respectively. Furthermore, a study by Lockman et
al. [12] successfully detected 87.5% of seizures, however, on closer observation it was noticed that
204 non-seizure movements were also detected. Similarly, a study by Schulc et al. [13] produced a
set of results on a sample size of 20 adults, measuring 100% sensitivity and 88% specificity. Whilst
this study presented several novel findings for spectral and temporal analysis of ACM data, the
predominant findings relevant to this study indicated that the false detection rate was affected by
the  choice  of  algorithm,  as  it  was  unable  to  distinguish  between  repetitive  movements  (e.g.,
brushing teeth) from the convulsions observed during a GTC seizure. To counteract the recurring
pattern of inaccurate classification and false predictions, several studies have attempted to solve
this problem at an algorithmic level. Whilst the number of false predictions is well documented in
ACM detection studies, there is an observable commonality regarding how models are trained.
Algorithms are  trained using sequential  event  prediction,  where  the  measurements  from past
seizures are used to predict future occurrences. Although this training process has been successful
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in other domains, the vast spectrum of motions observed during a seizure can vary depending on
each person’s type of epilepsy and physiological characteristics. 

To overcome this problem, detection algorithms need to be able to distinguish different types of
non-seizure related movements from the rhythmic jerking and muscle spasms observed during a
convulsion [14]. Therefore, detection algorithms need to be trained using data from past seizures
and common activities that share similar positions in three-dimensional space. Although literature
supports the idea that seizure detection algorithms need to differentiate the spasms and twitches
observed during a seizure from common everyday movements, little has been done to achieve this
[8].  Therefore,  this  paper  proposes  a  novel,  seizure  detection  method  that  applies  activity
recognition (AR) techniques to detect different types of movement and reduce the frequency of
false positive predictions.

1.2. Activity Recognition

The principles of AR and classification of temporal movement have been applied to various facets
of human analysis, such as medicine,  behavioural sciences,  and physiotherapy [15].  Measuring
acceleration  in  three-dimensional  space  enables  ACMs  to  quantify  human  movement  and
locomotion. Current literature states that common activities such as walking, jogging, and sitting,
can be classified using AR techniques to a consistent degree of accuracy between 83%-91% when
using  two  or  more  ACM  devices  [16].  Further  studies  have  extended  the  scope  of  recorded
activities and the practical application of AR, using accelerometer-based systems for real-time fall
detection  [17],  health  &  fitness  monitoring  [18],  and  energy  efficiency  [19].  There  are  several
studies that have identified the thigh as the optimum location for ACM placement, although the
activities  used  in  these  studies  predominantly  focus  on  ambulatory  movement  (e.g.,  walking,
jogging) [20]. However, for the detection of an epileptic seizure, ambulatory motion is negated, as
the  body  stiffens  and  becomes  unresponsive,  with  disequilibrium  causing  the  patient  to  fall
backwards [21]. Furthermore, studies by Ullah et al. [22] and Zebin et al. [23] have paved the way
for deep learning AR, constructing neural networks with a 92% and 93% accuracy, respectively,
when classifying commonly occurring activities. Whilst these studies have used a multi-sensor or
embedded smartphone ACM to record activities, this study will use a single wrist-worn ACM and
sequential deep learning model to detect different activities that share similar movements with an
epileptic seizure.

1.3. Long Short-Term Memory (LSTM)

As defined by Hochreiter and Schmidhuber [24], a LSTM network is a recurrent neural network
(RNN) architecture which can be used for learning long-term dependencies and modelling the
temporal dynamics of time series data.  LSTM units use gating to overcome the vanishing and
exploding gradient problems encountered with traditional RNNs [25]. As shown in  Figure 1, an
LSTM unit consists of a cell state, input gate, output gate and a forget gate. The cell state is used to
store information based on previous and current intervals,  whilst the three gating units act as
artificial neurons that protect and regulate the cell state by using activation functions [26]. The
gates control the operations of the LSTM cell, the sigmoid and tanh activation functions identify
the information to update and create new candidate vectors for the cell state, whilst a hidden state,
which is expressed as is used for the cells output [27].
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Figure 1: LSTM unit where C t−1= previous cell state, ht−1=cells hidden state, x t= weighted sum of cell 
input, C= candidate vector,σ=sigmoid function, tanh=tanh function, it=input gate, f t=forget gate, x t
=output gate, C t=cell state.

Firstly, the forget gate uses a sigmoid activation function to keep or remove data from the cell
state. Cell data is converted to a value between 0 and 1. If the value is equal to 0 then the data is
removed  from  the  cell  state,  else  if  it  equals  to  1  the  data  is  kept.  This  can  be  expressed
mathematically as - 

f t=σ (W i ∙ [ht−1 , x t ]+bi) (1)

Where  ht−1 represents the cells hidden state and  x t  is the weighted sum of the cells input
data [23].

Next, the input gate layer uses a sigmoid function to determine where a new value will be stored
within  the  cell  state.  Once  identified,  a  tanh  function  initiates  a  new  vector  of  type  where
represents the new candidate vector that will be added to the cell state [28].

it=σ (W i ∙ [h t−1 , x t ]+bi) (2)

~C t=tanh (W C ∙ [ht−1 , x t ]+bC) (3)

The previous cell state value is then overwritten with the newly computed cell state value . The
forget gate value is then multiplied by the previous cell state where. Then the input gate value is
multiplied by the new cell state value. The input and forget gate values are then combined to
update the cell state [28]. This is expressed mathematically as -

C t=f t∗C t−1+it∗Ct (4)
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Lastly, the output gate generates a filtered version of the cell state’s output. A sigmoid function is
used to filter the cell state and identify the output value [29]. Then the tanh function is used to
translate the cell state value between -1 and 1 as shown in equation (6), expressing the cells hidden
output as -

o t=σ (W o [ht−1 , x t ]+bo) (5)

ht=ot ∙ tanh(C t) (6)

1.4. Stacked LSTM Networks

The success of deep learning studies, notably Szegedy et al. [30] and Simonyan & Zisserman [31]
have indicated that a degree of depth to the underlying network architecture will improve overall
performance. To increase the depth of an LSTM network, cells can be stacked as layered matrices.
As LSTM networks process sequential time series data, stacking additional layers adds a level of
abstraction  of  input  observations  [32].  Whilst  stacking  additional  layers  can improve  network
performance, this only works up to a certain number of stacks [33]. Generally, once two stacks are
passed, accuracy levels become saturated, as the network becomes susceptible to the degradation
problem [34]. Therefore, finding the optimum number of stacks is paramount, as the number of
layers increase, it becomes harder to optimise the network.

2. Methods and Materials

In this study, we collected data from 10 participants (eight healthy adults and two with refractory
epilepsy who experience GTC seizures) using a single wrist-worn tri-axial ACM and gyroscope.
Spanning  a  48-hour  period,  participants  were  instructed  to  wear  an  accelerometer  on  their
dominant hand and carry out the activities and movements listed in Table 1. 

Table 1: 
List of the activities recorded.

Common gestures Non-seizure related activities
Walking Lie-down
Jogging Watching TV
Sitting Sleeping
Standing Brushing teeth
Upstairs Making sandwich
Downstairs

This study used a variation of the list by Lockman et al. [12] who identified several movements
that  have  similar  wrist  mechanics  to  a  GTC  seizure,  and the  common  activities  listed  in  the
Wireless Sensor Data Mining (WSIDM) dataset [35].
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2.1. Seizure Simulation

The notion of using healthy participants to simulate an epileptic seizure has been explored in
several studies, most notably by Conradsen et al. [36] who used 10 healthy subjects to simulate the
motor manifestations observed during a GTC seizure. A trained clinician was used to observe the
simulation process, concluding that the observed visual movements were very similar to those of a
real GTC seizure. Furthermore, simulation has been used in several multi-modal detection studies,
with the movements acquired successfully training seizure detection models [37]. 

Therefore, based on the successful use of simulated seizures, it is our feeling that the combination
of simulated and non-simulated seizures will provide our model with the training data required to
differentiate different types of activity. For this study, each participant simulated 3-4 GTC seizures,
either in a supine sleeping position as shown in  Figure 2, or a lateral position to recreate lying
down on one’s side. Based on current observations it  was our feeling that these two positions
provided an accurate representation of the positions a patient would experience during a seizure’s
onset.  Video  recordings  were  used  to  guide  participants  in  accurately  recreating  the  muscle
twitches and convulsions seen in a GTC seizure [38], with an allotted time of 80 -110 seconds per
simulation as shown in Table 2.

Figure  2: An experiment using participant 4, where he is simulating the muscle movements of a GTC
seizure.

2.2. Model Type

Due to the complexities of time series forecasting, we needed to develop a model with the control
ability to regulate the flow of long-term dependencies whilst handling the recurring issues RNN’s
experience during back propagation such as the vanishing gradient problem. Based on the success
of  Hochreiter  and  Schmidhuber  [24],  it  was  clear  that  we  required  a  model  designed  to  use
multiplicative,  hidden  gating  units  to  manage  long-term  memory  sequences  such  as  a  gated
recurrent unit (GRU) or LSTM network. Therefore, an LSTM network with Adam optimisation
was chosen as literature dictates longer memory sequences, separate update and forget gates, and
a higher degree of accuracy when using long-term dependencies. To further improve our model’s
performance  and depth,  we  used a  stacked architecture  as  this  enables  each  layer  to  process
sequential data at different timescales [33].
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Table 2:
Number of simulated and non-simulated seizures. Participants 1-8=healthy adults, participants 9-
10= diagnosed with epilepsy. Gen=Gender; Dur=Duration; Qty=Quantity.

Participant Age Gen Dur Qty
1 34 Male 03:20 3
2 35 Female 04:35 4
3 45 Male 04:00 4
4 28 Male 03:34 4
5 58 Female 03:48 4
6 34 Male 04:20 5
7 33 Female 04:13 4
8 25 Male 04:01 4
9 29 Female 06:20 5
10 35 Male 08:10 7

2.3. Feature Selection and Preprocessing

To train our LSTM network, we converted a one-dimensional array to a three-dimensional array.
We  then  split  our  dataset  into  a  series  of  fixed  length  sequences  as  LSTMs  require  three-
dimensional input [39]. A 25Hz sampling frequency was used to capture the data, recording an
estimated 20 records of three-dimensional data every second. Each fixed length sequence spans a
10 second time segment and contains 200 records per fixed length sequence. We recorded 12 GTC
seizures from the two adults diagnosed with epilepsy, spanning 14 mints and 30 s A further 34
seizures  were  simulated  by  the  remaining  participants,  totalling  32  mints  and  10  s.  After
preprocessing, we had 280 fixed length sequences of simulated and non-simulated seizure data to
train our model.

2.4. Network Architecture

This methodology presents a stacked LSTM neural network for multi-class classification of fixed
length sequences.  Figure 3 shows the architectural schematics of our network, consisting of two
fully connected layers and two stacked LSTM layers with 64 cells in each. Data normalisation was
initiated using the hidden layers linear discriminant function and a rectified linear unit (ReLU)
activation,  feeding the  data  to  the  LSTM cells.  The network was  developed using the  Python
programming  language,  with  TensorFlow  and  Keras  deep  learning  libraries.  The  following
components were used to develop our model.

2.5. L2 Regularisation

To prevent  our network  from  over  fitting or  incurring generalisation errors,  we added an L2
regularizer. Regularisation is the process of modifying an algorithm to reduce its generalisation
error without altering its training error value [40]. The L2 regularizer uses the squared magnitude
of  the  coefficient  as  penalty  term  for  the  network’s  loss  function  [41].  This  is  expressed
mathematically as
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λ∑
i

wi
2

(7)

where  λ represents the regularizers coefficient and  w is the value of our models manipulatable
parameters (weights and biases).

Figure 3: Architectural diagram of our stacked LSTM network with softmax function.

2.6. Loss Function

This  study used a  cross-entropy loss  (log loss)  function for  single  label  categorisation.  An L2
regularizer was added to the cross-entropy loss function to reduce overfitting and improve the
networks performance and optimisation capabilities [42]. The following formula is a mathematical
representation of our network’s loss function with added L2 regularizer where  w represents the
network’s parameters, y i the true class labels and ŷ i the predicted labels [43]. 

LF=−( 1
N

)∑
i=1

[ y i log( ŷi)+(1− y i) log(1− ŷ i)]+λ∑
i

wi
2 (8)

2.7. Softmax Function

The softmax (normalised exponential) function is the final layer of our network and takes an input
vector of K  values and transforms it into a vector of K  values that have a combined sum of 1 [44].
Each K  value has a number between 0 and 1, so that they can be used as probability measures for
multi-class classification [45]. The softmax function can be written as

σ ( z⃗ i)=
ezi

Σ j=1
K ez j

(9)

Where z⃗ represents the input vector of K  values, K  the number of activities applied classes and e z j
is the standard exponential function to each K  value [44].
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2.8. Adaptive Moment Estimation

Adaptive  Moment  Estimation  (Adam)  is  a  stochastic  optimisation  algorithm  that  calculates
adaptive  learning  rates  for  each  parameter  [46].  Adam combines  the  advantages  of  Adaptive
Gradient (AdaGrad) and Root Mean Square Propagation (RMSProp) for first-order gradient-based
optimisation of stochastic objective functions [47]. Adam computes an exponential moving average
of the gradient, squared gradient and parameters and. As defined by Kingma & Ba [48], Adam’s
mathematical structure for stochastic optimisation is express using the pseudo code in Table 3.

Table 3:
Pseudo code for the ADAM optimisation algorithm.

Require: α :Stepsize
Require: β1 , β2ϵ [0,1): Moment estimates exponential decay rates
Require: f (θ ): Stochastic objective function with parameters θ
Require: θ0 : Initial vector
 m0←0 (Initialize 1st moment vector)
 v0←0 (Initialize 2nd moment vector)
 t←0 (Timestep Initialization)
 while θt not converged do
 t←t+1
 gt←∇ θ f t(θt−1) (Get gradients from stochastic function where 
timestep= t)
 mt←β2←β1∙ mt−1+(1−β1)∙ gt (Update 1st moment estimate)
 v t ∙v t−1+(1−β2)∙ gt

2 (Update 2nd moment estimate)
 m̂t←mt−1 /¿(Calculate bias-corrected 1st moment estimate)
 v̂ t←v t−1 /¿ (Calculate bias-corrected 2nd moment estimate)
 θt←θ t−1−α ∙m̂t /(√ v̂ t+ϵ ) (Parameters updated) 
 end while
 return θt(Resulting parameters)

3. Experiments and Results

This section lists the experiments that were performed and the results that were obtained when
evaluating the performance of our stacked LSTM network.

3.1. Experiments

The experiments conducted were designed to assess varying aspects of our network’s ability to
classify different types of movement. Table 4 lists the parameters and specifications used to train
our network prior to experimentation. The formulas for each experiment are defined using the
following  acronyms.  TP:  True  Positive,  FP:  False  Positive,  TN:  True  Negative  and  FN:  False
Negative.
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Table 4:
Optimisation parameters and network specifications.

Parameters Value
Training/test data split 75:25
Learning rate 0.0025
Number of epochs 50
L2 loss 0.0015

Accuracy  measures  the  number  of  correct  positive  observations  against  the  number  of  total
observations [49]. This is expressed mathematically as

Accuracy= TP+FN
TP+TN+FP+FN

(10)

Precision represents the number of correct positive predictions against the total number of positive
predictions that were made [49]. Precision is defined as

Precision= TP
TP+FP

(11)

Recall represents the ratio of observations that are correctly predicted as positive against the total
number of positive observations. This is expressed as

Recall= TP
TP+FN

(12)

F-measure is defined as the weighted harmonic mean of precision and recall. The F-measure was
used to  assess  the  overall  performance of  the  precision  and recall  experiments  and present  a
balanced average of the two measures combined [50].

F−Measure=2 ∙ Precision ∙ Recall
Precision+Recall

(13)

3.2. Results

This section presents the experimental results of our LSTM network. Figure 4 is a mathematical
representation of our LSTM network’s incremental learning process, whilst Table 5 shows a 10-
increment overview of the training accuracy and loss incurred. Performance is evaluated using
classification  accuracy,  whilst  the  network  is  optimised using  cross-entropy  loss.  As  accuracy
increases, the loss value decreases until they both stabilise at 35 and 50 epochs, respectively. After
50 epochs, our network achieved an overall accuracy of 94.45% with a loss of 0.357.
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Figure 4: Learning and loss curve for stacked LSTM network.

Table 5:
Accuracy and loss results with 10 epoch increments.

Epoch Accuracy Training Loss
01 0.74448025226 1.75442266464
10 0.88748329877 0.82598221302
20 0.92881274223 0.53437787294
30 0.93407714366 0.44142538309
40 0.94460594654 0.38219016790
50 0.94452738761 0.35765498876

Outcome 0.94452738761 0.35765498876

To evaluate how well our model can distinguish the different types of movement, we used a multi-
label confusion matrix as shown in the Figure 5. The diagonal elements represent the true positive
values indicating the number of times our model made a correct prediction [51]. The remaining
values indicate incorrect classifications. Horizontal values represent false negatives, whilst vertical
values represent false positives. Table 6 lists the results of our precision and recall experiments.
Precision results represent the proportion of positive predictions that were made. The network
distinguished GTC seizures from other non-seizure related movements 91% of the time. A recall
value of 90% was observed when identifying seizure activities,  which indicates the number of
times a positive value was correctly identified for that activity. Furthermore, our model struggled
to differentiate the watching TV activity from other types, resulting in a precision and recall value
of 69% and 71% respectively. 
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Figure 5: Multi-label confusion matrix with diagonal elements representing the number of correct 
predictions.

Table 6:
Precision and recall results for each activity.

Activity Precision Recall
Brush teeth 0.84 0.87
Downstairs 0.95 0.84
Jogging 0.99 0.99
Lie-down 0.84 0.70
Make sandwich 0.89 0.87
Seizure 0.91 0.90
Sitting 0.86 0.97
Sleeping 0.84 0.63
Standing 0.92 0.98
Upstairs 0.87 0.93
Walking 0.98 0.99
Watching TV 0.69 0.71

Table 7 shows the F-measure values of our model. We have calculated the harmonic mean for each
activity, to present a balanced measure of precision and recall.
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Table 7:
F-measure scores for each activity experiment.

Activity F-Measure
Brush teeth 0.85
Downstairs 0.89
Jogging 0.99
Lie-down 0.77
Make sandwich 0.88
Seizure 0.90
Sitting 0.91
Sleeping 0.72
Standing 0.95
Upstairs 0.90
Walking 0.99
Watching TV 0.70

4. Discussion

Whilst further investigation is required to determine if this method of detection has incurred a
lower false positive rate than other commercial systems, there is sufficient evidence to make an
educated assumption that this has been attained. Of the 456 seizures predicted, 396 (87%) were
correctly identified. Our model also eliminated 11 other possible activities prior to formulating this
final prediction. Whilst traditional detection algorithms are susceptible to false predictions when
an unforeseen or repetitive movement occurs (brushing teeth),  we believe that  our model has
overcome  this  limitation  and  can  only  improve  over  time  as  more  activities  and  repetitive
movements are added to our ever growing dataset. 

Although  it  is  unclear  why  activities  such  as  watching  TV and  lying  down  yielded  a  lower
precision and recall value, we speculate that it was due to other activities such as sleeping, sharing
a similar position in three-dimensional space. This is further validated as distinct activities that do
not share any similarities such as walking, jogging, and standing show higher levels of precision
and recall. However, at this stage of understanding further research is warranted to prove whether
these  performance  measures  are  a  result  of  similar  or  distinct  movements.  Furthermore,
identifying the specific movements or activities that are predominantly responsible for triggering
false  alarms could  positively impact  those  diagnosed with refractory  epilepsy  and constitutes
further research and investigation to validate the kinds of conclusions that can be drawn from this
study.

5. Conclusion

This  paper  presents  a  deep  learning  method  for  ACM-based  detection  of  epileptic  seizures.
Although  the  model  used  for  this  study  was  based  on  a  known  technique  for  time-series
forecasting,  its  application for  the detection of  epileptic  seizures  is  novel  and requires  further
investigation. The system developed for this study can distinguish different types of movement
and presents  a more sophisticated method of  detection as  multiple  possibilities  (activities)  are
eliminated  before  a  positive  identification  is  made.  Whilst  traditional  detection  mechanisms
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depend solely on the data recorded prior to and during a seizure’s onset, the method presented in
this study is multifaceted, and analyses activities from several categories of movement (common,
seizure and non-seizure) prior to formulating a conclusion. By using a stacked LSTM network, we
tested  the  hypothesis  that  activity  recognition  could  be  used  to  detect  epileptic  seizures  and
improve on current levels of performance as common movements and activities are accounted for
when making a prediction. 

To conclude, our stacked LSTM network successfully distinguished a seizures onset from other
types of seizure related and non-seizure related movements, outputting an overall classification
accuracy of 94.45%.

Conflict of Interest: The authors declare that there is no conflict of interest or no ethical issues to
disclose. 
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