663 research outputs found

    Alignment procedure for the VIRGO Interferometer: experimental results from the Frascati prototype

    Get PDF
    A small fixed-mirror Michelson interferometer has been built in Frascati to experimentally study the alignment method that has been suggested for VIRGO. The experimental results fully confirm the adequacy of the method. The minimum angular misalignment that can be detected in the present set-up is 10 nrad/sqrt{Hz}Comment: 10 pages, LaTex2e, 4 figures, 5 tables. Submitted to Phys. Lett.

    N=2 SYM RG Scale as Modulus for WDVV Equations

    Get PDF
    We derive a new set of WDVV equations for N=2 SYM in which the renormalization scale Λ\Lambda is identified with the distinguished modulus which naturally arises in topological field theories.Comment: 6 pages, LaTe

    Solving N=2 SYM by Reflection Symmetry of Quantum Vacua

    Get PDF
    The recently rigorously proved nonperturbative relation between u and the prepotential, underlying N=2 SYM with gauge group SU(2), implies both the reflection symmetry u(τ)=u(τˉ)\overline{u(\tau)}=u(-\bar\tau) and u(τ+1)=u(τ)u(\tau+1)=-u(\tau) which hold exactly. The relation also implies that τ\tau is the inverse of the uniformizing coordinate u of the moduli space of quantum vacua. In this context, the above quantum symmetries are the key points to determine the structure of the moduli space. It turns out that the functions a(u) and a_D(u), which we derive from first principles, actually coincide with the solution proposed by Seiberg and Witten. We also consider some relevant generalizations.Comment: 12 pg. LaTex, Discussion of the generalization to higher rank groups added. To be published in Phys. Rev.

    Noncommutative Riemann Surfaces

    Get PDF
    We compactify M(atrix) theory on Riemann surfaces Sigma with genus g>1. Following [1], we construct a projective unitary representation of pi_1(Sigma) realized on L^2(H), with H the upper half-plane. As a first step we introduce a suitably gauged sl_2(R) algebra. Then a uniquely determined gauge connection provides the central extension which is a 2-cocycle of the 2nd Hochschild cohomology group. Our construction is the double-scaling limit N\to\infty, k\to-\infty of the representation considered in the Narasimhan-Seshadri theorem, which represents the higher-genus analog of 't Hooft's clock and shift matrices of QCD. The concept of a noncommutative Riemann surface Sigma_\theta is introduced as a certain C^\star-algebra. Finally we investigate the Morita equivalence.Comment: LaTeX, 1+14 pages. Contribution to the TMR meeting ``Quantum aspects of gauge theories, supersymmetry and unification'', Paris 1-7 September 199

    The Relativistic Quantum Motions

    Full text link
    Using the relativistic quantum stationary Hamilton-Jacobi equation within the framework of the equivalence postulate, and grounding oneself on both relativistic and quantum Lagrangians, we construct a Lagrangian of a relativistic quantum system in one dimension and derive a third order equation of motion representing a first integral of the relativistic quantum Newton's law. Then, we plot the relativistic quantum trajectories of a particle moving under the constant and the linear potentials. We establish the existence of nodes and link them to the de Broglie's wavelength.Comment: Latex, 18 pages, 3 eps figure

    A Statistical Interpretation of Space and Classical-Quantum duality

    Full text link
    By defining a prepotential function for the stationary Schr\"odinger equation we derive an inversion formula for the space variable xx as a function of the wave-function ψ\psi. The resulting equation is a Legendre transform that relates xx, the prepotential F{\cal F}, and the probability density. We invert the Schr\"odinger equation to a third-order differential equation for F{\cal F} and observe that the inversion procedure implies a xx-ψ\psi duality. This phenomenon is related to a modular symmetry due to the superposition of the solutions of the Schr\"odinger equation. We propose that in quantum mechanics the space coordinate can be interpreted as a macroscopic variable of a statistical system with \hbar playing the role of a scaling parameter. We show that the scaling property of the space coordinate with respect to τ=ψ2F\tau=\partial_{\psi}^2{\cal F} is determined by the ``beta-function''. We propose that the quantization of the inversion formula is a natural way to quantize geometry. The formalism is extended to higher dimensions and to the Klein-Gordon equation.Comment: 11 pages. Standard Latex. Final version to appear in Physical Review Letters. Revised and extended version. The formalism is extended to higher dimensions and to the Klein-Gordon equation. A possible connection with string theory is considered. The xψx-\psi duality is emphasized by a minor change in the title. The new title is: Duality of xx and ψ\psi and a statistical interpretation of space in quantum mechanic

    Nonperturbative Relations in N=2 SUSY Yang-Mills and WDVV equation

    Get PDF
    We find the nonperturbative relation between trϕ2\langle {\rm tr} \phi^2 \rangle, trϕ3\langle {\rm tr} \phi^3\rangle the prepotential F{\cal F} and the vevs ϕi\langle \phi_i\rangle in N=2N=2 supersymmetric Yang-Mills theories with gauge group SU(3)SU(3). Nonlinear differential equations for F{\cal F} including the Witten -- Dijkgraaf -- Verlinde -- Verlinde equation are obtained. This indicates that N=2N=2 SYM theories are essentially topological field theories and that should be seen as low-energy limit of some topological string theory. Furthermore, we construct relevant modular invariant quantities, derive canonical relations between the periods and investigate the structure of the beta function by giving its explicit form in the moduli coordinates. In doing this we discuss the uniformization problem for the quantum moduli space. The method we propose can be generalized to N=2N=2 supersymmetric Yang-Mills theories with higher rank gauge groups.Comment: 12 pages, LaTex. Expanded version. New results, corrections, references and acknowledgements adde

    Branched Matrix Models and the Scales of Supersymmetric Gauge Theories

    Full text link
    In the framework of the matrix model/gauge theory correspondence, we consider supersymmetric U(N) gauge theory with U(1)NU(1)^N symmetry breaking pattern. Due to the presence of the Veneziano--Yankielowicz effective superpotential, in order to satisfy the FF--term condition iSi=0\sum_iS_i=0, we are forced to introduce additional terms in the free energy of the corresponding matrix model with respect to the usual formulation. This leads to a matrix model formulation with a cubic potential which is free of parameters and displays a branched structure. In this way we naturally solve the usual problem of the identification between dimensionful and dimensionless quantities. Furthermore, we need not introduce the N=1\N=1 scale by hand in the matrix model. These facts are related to remarkable coincidences which arise at the critical point and lead to a branched bare coupling constant. The latter plays the role of the N=1\N=1 and N=2\N=2 scale tuning parameter. We then show that a suitable rescaling leads to the correct identification of the N=2\N=2 variables. Finally, by means of the the mentioned coincidences, we provide a direct expression for the N=2\N=2 prepotential, including the gravitational corrections, in terms of the free energy. This suggests that the matrix model provides a triangulation of the istanton moduli space.Comment: 1+18 pages, harvmac. Added discussion on the CSW relative shifts of theta vacua and the odd phases at the critical point. References added and typos correcte

    The Equivalence Postulate of Quantum Mechanics

    Get PDF
    The Equivalence Principle (EP), stating that all physical systems are connected by a coordinate transformation to the free one with vanishing energy, univocally leads to the Quantum Stationary HJ Equation (QSHJE). Trajectories depend on the Planck length through hidden variables which arise as initial conditions. The formulation has manifest p-q duality, a consequence of the involutive nature of the Legendre transform and of its recently observed relation with second-order linear differential equations. This reflects in an intrinsic psi^D-psi duality between linearly independent solutions of the Schroedinger equation. Unlike Bohm's theory, there is a non-trivial action even for bound states. No use of any axiomatic interpretation of the wave-function is made. Tunnelling is a direct consequence of the quantum potential which differs from the usual one and plays the role of particle's self-energy. The QSHJE is defined only if the ratio psi^D/psi is a local self-homeomorphism of the extended real line. This is an important feature as the L^2 condition, which in the usual formulation is a consequence of the axiomatic interpretation of the wave-function, directly follows as a basic theorem which only uses the geometrical gluing conditions of psi^D/psi at q=\pm\infty as implied by the EP. As a result, the EP itself implies a dynamical equation that does not require any further assumption and reproduces both tunnelling and energy quantization. Several features of the formulation show how the Copenhagen interpretation hides the underlying nature of QM. Finally, the non-stationary higher dimensional quantum HJ equation and the relativistic extension are derived.Comment: 1+3+140 pages, LaTeX. Invariance of the wave-function under the action of SL(2,R) subgroups acting on the reduced action explicitly reveals that the wave-function describes only equivalence classes of Planck length deterministic physics. New derivation of the Schwarzian derivative from the cocycle condition. "Legendre brackets" introduced to further make "Legendre duality" manifest. Introduction now contains examples and provides a short pedagogical review. Clarifications, conclusions, ackn. and references adde
    corecore