382 research outputs found

    Effects of improved sodium uptake ability on grain yields of rice plants under low potassium supply

    Get PDF
    Sodium uptake is a factor that determines potassium use efficiency in plants as sodium can partially replace potassium in plant cells. Rice (Oryza sativa) roots usually exclude sodium but actively take it up when the plant is deficient in potassium. In rice roots, a sodium transporter OsHKT2;1 mediates active sodium uptake. We previously revealed that variation in the expression of OsHKT2;1 underlies the variation in sodium accumulation between a low-sodium-accumulating indica cultivar, IR64, and a high-sodium-accumulating japonica cultivar, Koshihikari. In the present study, we evaluated IR64 and its near-isogenic line IR64-K carrying OsHKT2;1 and neighboring genes inherited from Koshihikari for grain yield. IR64-K had a greater average grain yield and harvest index than IR64 in a pot culture experiment with three levels of potassium fertilizer. The differences were most significant under treatment without the potassium fertilizer. IR64-K also showed a slightly higher grain yield than IR64 when grown in a paddy field without applying the potassium fertilizer. These results suggest that enhanced sodium uptake ability improves the grain yield of rice plants under low-potassium-input conditions

    Sodium Stimulates Growth of Panicum coloratum

    Full text link

    Sodium-Stimulated NO 3

    Full text link

    Boron Nutrition of Tobacco BY-2 Cells. V. Oxidative Damage is the Major Cause of Cell Death Induced by Boron Deprivation

    Get PDF
    Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD

    Early Responses of Sodium-Deficient Amaranthus tricolor

    Full text link

    Sodium Stimulates Growth of Amaranthus tricolor

    Full text link

    Massively parallel single-cell genomics of microbiomes in rice paddies

    Get PDF
    世界初のイネ根圏微生物叢の網羅的1細胞ゲノム解析に成功 --コメ生産現場が抱える問題のデータベース化に向けて--. 京都大学プレスリリース. 2022-11-09.Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant–microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution. We isolated microbial cells from paddy soil and determined their genomic sequences by using massively parallel whole-genome amplification in microfluidic-generated gel capsules. We successfully obtained 3, 237 single-amplified genomes in a single experiment, and these genomic sequences provided insights into microbial functions in the paddy ecosystem. Our approach offers a promising platform for gaining novel insights into the roles of microbes in the rice rhizomicrobiome and to develop microbial technologies for improved and sustainable rice production

    Assessment of Cadmium and Zinc Contamination in the Soils Around Pha Te Village, Mae Sot District, Tak Province, Thailand

    Get PDF
    In this study sequential extraction was used to fractionate cadmium (Cd) and zinc (Zn) from soils into six operationally defined groups; water soluble, buffer-exchangeable, carbonate, FeMn oxide, organic, and residual. Soil samples from agricultural areas surrounding Pha Te village, Mae Sot District, Tak Province, Thailand, were classified into four categories; forest soil, upland soil, upper-paddy soil and lower-paddy soil. Total soil Cd and Zn concentrations ranged from 0.63 to 30.4 mg kg-1 and 14.4 to 594 mg kg-1, respectively. Cd and Zn concentrations were higher in the upper- and lower-paddy soil (5.93 to 30.4 mg kg-1 for Cd and 286 to 594 mg kg-1 for Zn). These soils are considered as polluted. Cd in the polluted soil was dominantly associated with the buffer-exchangeable and carbonate-bound (40 to 70 % of total Cd), while in non-polluted soils; the residual fraction was dominant (50 to 80 % of the total Cd). The major proportion of Zn (37 to 46 % of total Zn) in the non-polluted soil and the upper-paddy soil occurred in the residual fraction. On the other hand, the major proportion of total Zn in the lower-paddy soil was associated with FeMn oxides (36 % of total Zn). The results show that mobility and potential bioavailability of Cd and Zn (61 and 25 %) in polluted soil were higher than in non-polluted soils (15 and 19 % in Cd and Zn, respectively). Metal distribution in different chemical fractions in these soils depended on the respective total metal concentrations

    Rhamnogalacturonan-II cross-linking of plant pectins via boron bridges occurs during polysaccharide synthesis and/or secretion

    Get PDF
    Rhamnogalacturonan-II (RG-II), a domain of plant cell wall pectins, is able to cross-link with other RG-II domains through borate diester bridges. Although it is known to affect mechanical properties of the cell wall, the biochemical requirements and lifecycle of this cross-linking remain unclear. We developed a PAGE methodology to allow separation of monomeric and dimeric RG-II and used this to study the dynamics of cross-linking in vitro and in vivo. Rosa cells grown in medium with no added boron contained no RG-II dimers, although these re-appeared after addition of boron to the medium. However, other Rosa cultures which were unable to synthesize new polysaccharides did not show dimer formation. We conclude that RG-II normally becomes cross-linked intraprotoplasmically or during secretion, but not post-secretion
    corecore