301 research outputs found
Engagement-aware computing: Modelling user engagement from mobile contexts
In this paper, we examine the potential of using mobile context to model user engagement. Taking an experimental approach, we systematically explore the dynamics of user engagement with a smartphone through three different studies. Specifically, to understand the feasibility of detecting user engagement from mobile context, we first assess an EEG artifact with 10 users and observe a strong correlation between automatically detected engagement scores and user's subjective perception of engagement. Grounded on this result, we model a set of application level features derived from smartphone usage of 10 users to detect engagement of a usage session using a Random Forest classifier. Finally, we apply this model to train a variety of contextual factors acquired from smartphone usage logs of 130 users to predict user engagement using an SVM classifier with a F1-Score of 0.82. Our experimental results highlight the potential of mobile contexts in designing engagement-aware applications and provide guidance to future explorations
Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres.
Magnetoelectric 0-1 composites comprising CoFe2O4 (CFO) nanoparticles in a polyvinylidene fluoride (PVDF) polymer-fibre matrix have been prepared by electrospinning. The average diameter of the electrospun composite fibres is ∼325 nm, independent of the nanoparticle content, and the amount of the crystalline polar β phase is strongly enhanced when compared to pure PVDF polymer fibres. The piezoelectric response of these electroactive nanofibres is modified by an applied magnetic field, thus evidencing the magnetoelectric character of the CFO/PVDF 0-1 composites.This work was supported by FEDER through the COMPETE Program and
by the Portuguese Foundation for Science and Technology (FCT) in the
framework of the Strategic Project PEST C/FIS/UI607/2014 and
PTDC/CTM NAN/112574/2009. R. G., P. M., V. S., G. B. and S. L. M.
acknowledge support from “Matepro – Optimizing Materials and
Processes” (ref. NORTE-07-0124-FEDER-000037), co funded by
“Programa Operacional Regional do Norte” (ON.2 – O Novo Norte,
QREN, FEDER). P. M. and R. Gonçalves acknowledges also support from
FCT (SFRH/BPD/96227/2013 and SFRH/BD/88397/2012 grants
respectively). X. M. acknowledges support from the Ramón y Cajal (RYC)
Programme (Spanish MEC) and the Royal Society.This is the accepted manuscript. The final version is available at http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/c5nr00453e#!divAbstract
Recommended from our members
Ferroelectric precursor behavior in PbSc<inf>0.5</inf>Ta <inf>0.5</inf>O<inf>3</inf> detected by field-induced resonant piezoelectric spectroscopy
A novel experimental technique, resonant piezoelectric spectroscopy (RPS), has been applied to investigate polar precursor effects in highly (65%) B-site ordered PbSc0.5Ta0.5O3 (PST), which undergoes a ferroelectric phase transition near 300 K. The cubic-rhombohedral transition is weakly first order, with a coexistence interval of ∼4 K, and is accompanied by a significant elastic anomaly over a wide temperature interval. Precursor polarity in the cubic phase was detected as elastic vibrations generated by local piezoelectric excitations in the frequency range 250–710 kHz. The RPS resonance frequencies follow exactly the frequencies of elastic resonances generated by conventional resonant ultrasound spectroscopy (RUS) but RPS signals disappear on heating beyond an onset temperature, Tonset, of 425 K. Differences between the RPS and RUS responses can be understood if the PST structure in the precursor regime between Tonset and the transition point, Ttrans=300 K, has locally polar symmetry even while it remains macroscopically cubic. It is proposed that this precursor behavior could involve the development of a tweed microstructure arising by coupling between strain and multiple order parameters, which can be understood from the perspective of Landau theory. As a function of temperature the transition is driven by the polar displacement P and the order parameter for cation ordering on the crystallographic B site Qod. Results in the literature show that, as a function of pressure, there is a separate instability driven by octahedral tilting for which the assigned order parameter is Q. The two mainly displacive order parameters, P and Q, are unfavorably coupled via a biquadratic term Q2P2, and complex tweedlike fluctuations in the precursor regime would be expected to combine aspects of all the order parameters. This would be different from the development of polar nanoregions, which are more usually evoked to explain relaxor ferroelectric behavior, such as occurs in PST with a lower degree of B-site order.RUS facilities in Cambridge were established through support from the NERC NE/B505738/1) to MAC. EKHS thanks the Leverhulme foundation (RG66640) and EPSRC (RG66344) for financial support.This is the accepted version of an original article published in Physical Review B and available online at http://link.aps.org/doi/10.1103/PhysRevB.88.174112
Recommended from our members
It’s not about the mass
Electrocaloric cooling devices are traditionally based on sub-millimetre-thick ceramic working bodies. Using instead a flexible polymer that is one order-of-magnitude thinner yields lightweight devices that have now been stacked to pump heat across a relatively wide temperature span
Unsupervised domain adaptation under label space mismatch for speech classification
Unsupervised domain adaptation using adversarial learning has shown promise in adapting speech models from a labeled source domain to an unlabeled target domain. However, prior works make a strong assumption that the label spaces of source and target domains are identical, which can be easily violated in real-world conditions. We present AMLS, an end-to-end architecture that performs Adaptation under Mismatched Label Spaces using two weighting schemes to separate shared and private classes in each domain. An evaluation on three speech adaptation tasks, namely gender, microphone, and emotion adaptation, shows that AMLS provides significant accuracy gains over baselines used in speech and vision adaptation tasks. Our contribution paves the way for applying UDA to speech models in unconstrained settings with no assumptions on the source and target label spaces
Inverse barocaloric effects in ferroelectric BaTiO<inf>3</inf> ceramics
We use calorimetry to identify pressure-driven isothermal entropy changes in ceramic samples of the prototypical ferroelectric BaTiO3. Near the structural phase transitions at ∼400 K (cubic-tetragonal) and ∼280 K (tetragonal-orthorhombic), the inverse barocaloric response differs in sign and magnitude from the corresponding conventional electrocaloric response. The differences in sign arise due to the decrease in unit-cell volume on heating through the transitions, whereas the differences in magnitude arise due to the large volumetric thermal expansion on either side of the transitions.European Research Council (Starting Grant ID: 680032), Engineering and Physical Sciences Research Council (Grant ID: EP/M003752/1), CICyT (Spain) (Project Nos. MAT2013-40590-P and FIS2014-54734-P), DGU (Catalonia) (Project No. 2014SGR00581), SUR (DEC Catalonia), AGAUR, FNR Luxembourg through COFERMAT project, Royal SocietyThis is the final version of the article. It first appeared from American Institute of Physics Publishing via http://dx.doi.org/10.1063/1.496159
Recommended from our members
Tunnelling anisotropic magnetoresistance at La<inf>0.67</inf>Sr<inf>0.33</inf>MnO<inf>3</inf>-graphene interfaces
Using ferromagnetic La0.67Sr0.33MnO3 electrodes bridged by single-layer graphene, we observe magnetoresistive changes of ∼32–35 MΩ at 5 K. Magneto-optical Kerr effect microscopy at the same temperature reveals that the magnetoresistance arises from in-plane reorientations of electrode magnetization, evidencing tunnelling anisotropic magnetoresistance at the La0.67Sr0.33MnO3-graphene interfaces. Large resistance switching without spin transport through the non-magnetic channel could be attractive for graphene-based magnetic-sensing applications.This work was funded by grant F/09 154/E from the Leverhulme Trust, ERC Grant Hetero2D, EU Graphene Flagship (no. 604391), a Schlumberger Cambridge International Scholarship, a UK EPSRC DTA award, the Royal Society, and EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/1 and EP/L016087/1.This is the author accepted manuscript. The final version is available at http://scitation.aip.org/content/aip/journal/apl/108/11/10.1063/1.4942778
Hidden Magnetism and Quantum Criticality in the Heavy Fermion Superconductor CeRhIn5
With understood exceptions, conventional superconductivity does not coexist
with long-range magnetic order[1]. In contrast, unconventional
superconductivity develops near a boundary separating magnetically ordered and
magnetically disordered phases[2,3]. A maximum in the superconducting
transition temperature Tc develops where this boundary extrapolates to T=0 K,
suggesting that fluctuations associated with this magnetic quantum-critical
point are essential for unconventional superconductivity[4,5]. Invariably
though, unconventional superconductivity hides the magnetic boundary when T <
Tc, preventing proof of a magnetic quantum-critical point[5]. Here we report
specific heat measurements of the pressure-tuned unconventional superconductor
CeRhIn5 in which we find a line of quantum-phase transitions induced inside the
superconducting state by an applied magnetic field. This quantum-critical line
separates a phase of coexisting antiferromagnetism and superconductivity from a
purely unconventional superconducting phase and terminates at a quantum
tetracritical point where the magnetic field completely suppresses
superconductivity. The T->0 K magnetic field-pressure phase diagram of CeRhIn5
is well described with a theoretical model[6,7] developed to explain
field-induced magnetism in the high-Tc cuprates but in which a clear
delineation of quantum-phase boundaries has not been possible. These
experiments establish a common relationship among hidden magnetism, quantum
criticality and unconventional superconductivity in cuprate and heavy-electron
systems, such as CeRhIn5.Comment: journal reference adde
Doping a semiconductor to create an unconventional metal
Landau Fermi liquid theory, with its pivotal assertion that electrons in
metals can be simply understood as independent particles with effective masses
replacing the free electron mass, has been astonishingly successful. This is
true despite the Coulomb interactions an electron experiences from the host
crystal lattice, its defects, and the other ~1022/cm3 electrons. An important
extension to the theory accounts for the behaviour of doped semiconductors1,2.
Because little in the vast literature on materials contradicts Fermi liquid
theory and its extensions, exceptions have attracted great attention, and they
include the high temperature superconductors3, silicon-based field effect
transistors which host two-dimensional metals4, and certain rare earth
compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid
behaviour in all of these systems remains controversial. Here we report that an
entirely different and exceedingly simple class of materials - doped small gap
semiconductors near a metal-insulator transition - can also display a non-Fermi
liquid state. Remarkably, a modest magnetic field functions as a switch which
restores the ordinary disordered Fermi liquid. Our data suggest that we have
finally found a physical realization of the only mathematically rigourous route
to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there
are too few mobile electrons to compensate for the spins of unpaired electrons
localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure
- …
