301 research outputs found

    Engagement-aware computing: Modelling user engagement from mobile contexts

    Get PDF
    In this paper, we examine the potential of using mobile context to model user engagement. Taking an experimental approach, we systematically explore the dynamics of user engagement with a smartphone through three different studies. Specifically, to understand the feasibility of detecting user engagement from mobile context, we first assess an EEG artifact with 10 users and observe a strong correlation between automatically detected engagement scores and user's subjective perception of engagement. Grounded on this result, we model a set of application level features derived from smartphone usage of 10 users to detect engagement of a usage session using a Random Forest classifier. Finally, we apply this model to train a variety of contextual factors acquired from smartphone usage logs of 130 users to predict user engagement using an SVM classifier with a F1-Score of 0.82. Our experimental results highlight the potential of mobile contexts in designing engagement-aware applications and provide guidance to future explorations

    Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres.

    Get PDF
    Magnetoelectric 0-1 composites comprising CoFe2O4 (CFO) nanoparticles in a polyvinylidene fluoride (PVDF) polymer-fibre matrix have been prepared by electrospinning. The average diameter of the electrospun composite fibres is ∼325 nm, independent of the nanoparticle content, and the amount of the crystalline polar β phase is strongly enhanced when compared to pure PVDF polymer fibres. The piezoelectric response of these electroactive nanofibres is modified by an applied magnetic field, thus evidencing the magnetoelectric character of the CFO/PVDF 0-1 composites.This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST C/FIS/UI607/2014 and PTDC/CTM NAN/112574/2009. R. G., P. M., V. S., G. B. and S. L. M. acknowledge support from “Matepro – Optimizing Materials and Processes” (ref. NORTE-07-0124-FEDER-000037), co funded by “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte, QREN, FEDER). P. M. and R. Gonçalves acknowledges also support from FCT (SFRH/BPD/96227/2013 and SFRH/BD/88397/2012 grants respectively). X. M. acknowledges support from the Ramón y Cajal (RYC) Programme (Spanish MEC) and the Royal Society.This is the accepted manuscript. The final version is available at http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/c5nr00453e#!divAbstract

    Unsupervised domain adaptation under label space mismatch for speech classification

    Get PDF
    Unsupervised domain adaptation using adversarial learning has shown promise in adapting speech models from a labeled source domain to an unlabeled target domain. However, prior works make a strong assumption that the label spaces of source and target domains are identical, which can be easily violated in real-world conditions. We present AMLS, an end-to-end architecture that performs Adaptation under Mismatched Label Spaces using two weighting schemes to separate shared and private classes in each domain. An evaluation on three speech adaptation tasks, namely gender, microphone, and emotion adaptation, shows that AMLS provides significant accuracy gains over baselines used in speech and vision adaptation tasks. Our contribution paves the way for applying UDA to speech models in unconstrained settings with no assumptions on the source and target label spaces

    Inverse barocaloric effects in ferroelectric BaTiO<inf>3</inf> ceramics

    Get PDF
    We use calorimetry to identify pressure-driven isothermal entropy changes in ceramic samples of the prototypical ferroelectric BaTiO3. Near the structural phase transitions at ∼400 K (cubic-tetragonal) and ∼280 K (tetragonal-orthorhombic), the inverse barocaloric response differs in sign and magnitude from the corresponding conventional electrocaloric response. The differences in sign arise due to the decrease in unit-cell volume on heating through the transitions, whereas the differences in magnitude arise due to the large volumetric thermal expansion on either side of the transitions.European Research Council (Starting Grant ID: 680032), Engineering and Physical Sciences Research Council (Grant ID: EP/M003752/1), CICyT (Spain) (Project Nos. MAT2013-40590-P and FIS2014-54734-P), DGU (Catalonia) (Project No. 2014SGR00581), SUR (DEC Catalonia), AGAUR, FNR Luxembourg through COFERMAT project, Royal SocietyThis is the final version of the article. It first appeared from American Institute of Physics Publishing via http://dx.doi.org/10.1063/1.496159

    Hidden Magnetism and Quantum Criticality in the Heavy Fermion Superconductor CeRhIn5

    Full text link
    With understood exceptions, conventional superconductivity does not coexist with long-range magnetic order[1]. In contrast, unconventional superconductivity develops near a boundary separating magnetically ordered and magnetically disordered phases[2,3]. A maximum in the superconducting transition temperature Tc develops where this boundary extrapolates to T=0 K, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity[4,5]. Invariably though, unconventional superconductivity hides the magnetic boundary when T < Tc, preventing proof of a magnetic quantum-critical point[5]. Here we report specific heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T->0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model[6,7] developed to explain field-induced magnetism in the high-Tc cuprates but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in cuprate and heavy-electron systems, such as CeRhIn5.Comment: journal reference adde

    Doping a semiconductor to create an unconventional metal

    Full text link
    Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure
    corecore