4,758 research outputs found

    Killing the Straw Man: Does BICEP Prove Inflation at the GUT Scale?

    Get PDF
    The surprisingly large value of rr, the ratio of power in tensor to scalar density perturbations in the CMB reported by the BICEP2 Collaboration, if confirmed, provides strong evidence for Inflation at the GUT scale. While the Inflationary signal remains the best motivated source, a large value of rr alone would still allow for the possibility that a comparable gravitational wave background might result from a self ordering scalar field (SOSF) transition that takes place later at somewhat lower energy. We find that even without detailed considerations of the predicted BICEP signature of such a transition, simple existing limits on the isocurvature contribution to CMB anisotropies would definitively rule out a contribution of more than 5%5\% to r0.2r \approx 0.2,. We also present a general relation for the allowed fractional SOSF contribution to rr as a function of the ultimate measured value of rr. These results point strongly not only to an inflationary origin of the BICEP2 signal, if confirmed, but also to the fact that if the GUT scale is of order 1016GeV10^{16} GeV then either the GUT transition happens before Inflation or the Inflationary transition and the GUT transition must be one and the same.Comment: 3 pages 2 figures, accepted for publication in Physics Letters B . Accepted version revised slightly in response to referee's comment

    Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers

    Full text link
    Polarized Neutron Reflectometry and magnetometry measurements have been used to obtain a comprehensive picture of the magnetic structure of a series of La{2/3}Sr{1/3}MnO{3}/Pr{2/3}Ca{1/3}MnO{3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0<=t_A<=7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to FM inclusions within the AFM matrix was found to be maximized at t_A~3 nm. This enhancement of the FM moment occurs at the matching between layer thickness and cluster size, where the FM clusters would find the optimal strain conditions to be accommodated within the "non-FM" material. These results have important implications for tuning phase separation via the explicit control of strain.Comment: 4 pages, submitted to PR

    Chiral extrapolation beyond the power-counting regime

    Get PDF
    Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately independent of the range of quark masses considered. By using recent precision, quenched lattice results, the extrapolation is tested directly by truncating the analysis to a set of points above 380 MeV, while being blinded of the results probing deeply into the chiral regime. The result is a successful extrapolation to the chiral regime.Comment: 8 pages, 18 figure

    Fuselage shell and cavity response measurements on a DC-9 test section

    Get PDF
    A series of fuselage shell and cavity response measurements conducted on a DC-9 aircraft test section are described. The objectives of these measurements were to define the shell and cavity model characteristics of the fuselage, understand the structural-acoustic coupling characteristics of the fuselage, and measure the response of the fuselage to different types of acoustic and vibration excitation. The fuselage was excited with several combinations of acoustic and mechanical sources using interior and exterior loudspeakers and shakers, and the response to these inputs was measured with arrays of microphones and accelerometers. The data were analyzed to generate spatial plots of the shell acceleration and cabin acoustic pressure field, and corresponding acceleration and pressure wavenumber maps. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, structural-acoustic coupling, and fuselage response

    On the immature stages of Stethorus gilvifrons Mulsant (Coleoptera: Coccinellidae).

    Get PDF
    Es wird eine eingehende morphologische Untersuchung der frühen Entwicklungsstadien von Stethorus gilvifrons Mulsant gegeben. Die Abbildungen umfassen äußerliche Unterscheidungsmerkmale des Eies, des vierten Larvenstadiums und der Puppe.A detailed morphological study of the immature stages of Stethorus gilvifrons Mulsant is presented. The illustrations include external distinguishing features of the egg, fourth instar larva and the pupa

    Searching for tetraquarks on the lattice

    Full text link
    We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 in the dynamical and the quenched lattice simulations using tetraquark interpolators. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0,2*pi/L,.. . However, we find an additional light state in the I=0 and I=1/2 channels, which may be related to the observed resonances sigma and kappa with a strong tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states.Comment: 3 pages, 1 figure, proceedings of Lepton-Photon 2009, Hambur
    corecore