47 research outputs found

    Longitudinal characteristics of T2-FLAIR mismatch in IDH-mutant astrocytomas: Relation to grade, histopathology, and overall survival in the GLASS-NL cohort.

    Get PDF
    BACKGROUND: The T2-FLAIR mismatch sign is defined by signal loss of the T2-weighted hyperintense area with Fluid-Attenuated Inversion Recovery (FLAIR) on magnetic resonance imaging, causing a hypointense region on FLAIR. It is a highly specific diagnostic marker for IDH-mutant astrocytoma and is postulated to be caused by intercellular microcystic change in the tumor tissue. However, not all IDH-mutant astrocytomas show this mismatch sign and some show the phenomenon in only part of the lesion. The aim of the study is to determine whether the T2-FLAIR mismatch phenomenon has any prognostic value beyond initial noninvasive molecular diagnosis. METHODS: Patients initially diagnosed with histologically lower-grade (2 or 3) IDH-mutant astrocytoma and with at least 2 surgical resections were included in the GLASS-NL cohort. T2-FLAIR mismatch was determined, and the growth pattern of the recurrent tumor immediately before the second resection was annotated as invasive or expansive. The relation between the T2-FLAIR mismatch sign and tumor grade, microcystic change, overall survival (OS), and other clinical parameters was investigated both at first and second resection. RESULTS: The T2-FLAIR mismatch sign was significantly related to Grade 2 (80% vs 51%), longer post-resection median OS (8.3 vs 5.2 years), expansive growth, and lower age at second resection. At first resection, no relation was found between the mismatch sign and OS. Microcystic change was associated with areas of T2-FLAIR mismatch. CONCLUSIONS: T2-FLAIR mismatch in IDH-mutant astrocytomas is correlated with microcystic change in the tumor tissue, favorable prognosis, and Grade 2 tumors at the time of second resection

    Genomic aberrations associated with outcome in anaplastic oligodendroglial tumors treated within the EORTC phase III trial 26951

    Get PDF
    Despite similar morphological aspects, anaplastic oligodendroglial tumors (AOTs) form a heterogeneous clinical subgroup of gliomas. The chromosome arms 1p/19q codeletion has been shown to be a relevant biomarker in AOTs and to be perfectly exclusive from EGFR amplification in gliomas. To identify new genomic regions associated with prognosis, 60 AOTs from the EORTC trial 26951 were analyzed retrospectively using BAC-array-based comparative genomic hybridization. The data were processed using a binary tree method. Thirty-three BACs with prognostic value were identified distinguishing four genomic subgroups of AOTs with different prognosis (p < 0.0001). Type I tumors (25%) were characterized by: (1) an EGFR amplification, (2) a poor prognosis, (3) a higher rate of necrosis, and (4) an older age of patients. Type II tumors (21.7%) had: (1) loss of prognostic BACs located on 1p tightly associated with 19q deletion, (2) a longer survival, (3) an oligodendroglioma phenotype, and (4) a frontal location in brain. Type III AOTs (11.7%) exhibited: (1) a deletion of prognostic BACs located on 21q, and (2) a short survival. Finally, type IV tumors (41.7%) had different genomic patterns and prognosis than type I, II and III AOTs. Multivariate analysis showed that genomic type provides additional prognostic data to clinical, imaging and pathological features. Similar results were obtained in the cohort of 45 centrally reviewed–validated cases of AOTs. Whole genome analysis appears useful to screen the numerous genomic abnormalities observed in AOTs and to propose new biomarkers particularly in the non-1p/19q codeleted AOTs

    MGMT promoter hypermethylation is a frequent, early, and consistent event in astrocytoma progression, and not correlated with TP53 mutation

    Get PDF
    Hypermethylation of the MGMT gene promoter and mutation of the TP53 tumor-suppressor gene are frequently present in diffuse astrocytomas. However, there is only anecdotal information about MGMT methylation status and TP53 mutations during progression of low-grade diffuse astrocytoma (AII) to anaplastic astrocytoma (AIII) and secondary glioblastoma (sGB). In this study biopsy specimens from 51 patients with astrocytic tumors with radiologically proved progression from low to high-grade malignancy were investigated for the presence and consistency of MGMT promoter hypermethylation and TP53 mutations. For 27 patients biopsy samples both of primary tumors and their recurrences were available. For the other 24 patients histology of either the low-grade lesion or the high-grade recurrence was available. It was found that MGMT promoter hypermethylation and TP53 mutations are both frequent and early events in the progression of astrocytomas and that their status is consistent over time. No correlation was found between MGMT methylation status and the presence of TP53 mutations. In addition, no correlation was found between MGMT promoter hypermethylation and the type of TP53 mutations. These results argue against the putative TP53 G:C>A:T transition mutations suggested to occur preferentially in MGMT hypermethylated tumors

    Glioma Through the Looking GLASS: Molecular Evolution of Diffuse Gliomas and the Glioma Longitudinal AnalySiS Consortium

    Get PDF
    Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas (TCGA) and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal AnalySiS Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities, and ultimately, improved outcomes for a patient population in need

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening

    Reducing severe fatigue in patients with diffuse glioma: a study protocol for an RCT on the effect of blended cognitive behavioural therapy

    No full text
    Background: Fatigue is the most frequent and burdensome symptom of patients with diffuse glioma. It is closely linked to decreased health-related quality of life and symptoms such as depression and sleep disturbances. Currently, there is no evidence-based treatment that targets severe fatigue in patients with brain tumours. Cognitive behavioural therapy is aimed at fatigue-maintaining beliefs and behaviour. This therapy has been proven effective in reducing severe fatigue in cancer survivors and patients with multiple sclerosis. A blended therapy program combines sessions with a therapist with therapist-guided web-based therapy modules. The aim of this randomized controlled trial is to determine the efficacy of blended cognitive behavioural therapy in treating severe fatigue in patients with diffuse glioma. Methods: We will include a maximum of 100 patients with diffuse glioma with clinically and radiologically stable disease and severe fatigue (i.e. Checklist Individual Strength, subscale fatigue severity ≥ 35). Patients will be randomized to blended cognitive behavioural therapy or a waiting list condition. The 12-week intervention GRIP on fatigue consists of five patient-therapist sessions and five to eight individualized web-based therapy modules supported by email contact. The primary outcome measure is fatigue severity. Secondary outcome measures include sleep quality, health-related quality of life, depression, anxiety, functional impairment and subjective and objective cognitive functioning. Primary and secondary outcome measures will be assessed at baseline and after 14 and 24 weeks. Magnetoencephalography and MRI will be used to evaluate potential biomarkers for intervention success. This trial has a Bayesian design: we will conduct multiple interim analyses to test for efficacy or futility of the trial. This is the first trial within the GRIP trial platform: a platform developing four to five different interventions for the most common symptoms in patients with diffuse glioma. Discussion: The results of the GRIP on fatigue trial will provide information about the efficacy of this intervention on fatigue in patients with diffuse glioma. Multiple other outcomes and possible predictors of treatment success will also be explored. Trial registration: Netherlands Trial Register NL8711. Registered on 14 June 2020

    Reducing severe fatigue in patients with diffuse glioma: a study protocol for an RCT on the effect of blended cognitive behavioural therapy

    No full text
    BACKGROUND: Fatigue is the most frequent and burdensome symptom of patients with diffuse glioma. It is closely linked to decreased health-related quality of life and symptoms such as depression and sleep disturbances. Currently, there is no evidence-based treatment that targets severe fatigue in patients with brain tumours. Cognitive behavioural therapy is aimed at fatigue-maintaining beliefs and behaviour. This therapy has been proven effective in reducing severe fatigue in cancer survivors and patients with multiple sclerosis. A blended therapy program combines sessions with a therapist with therapist-guided web-based therapy modules. The aim of this randomized controlled trial is to determine the efficacy of blended cognitive behavioural therapy in treating severe fatigue in patients with diffuse glioma. METHODS: We will include a maximum of 100 patients with diffuse glioma with clinically and radiologically stable disease and severe fatigue (i.e. Checklist Individual Strength, subscale fatigue severity ≥ 35). Patients will be randomized to blended cognitive behavioural therapy or a waiting list condition. The 12-week intervention GRIP on fatigue consists of five patient-therapist sessions and five to eight individualized web-based therapy modules supported by email contact. The primary outcome measure is fatigue severity. Secondary outcome measures include sleep quality, health-related quality of life, depression, anxiety, functional impairment and subjective and objective cognitive functioning. Primary and secondary outcome measures will be assessed at baseline and after 14 and 24 weeks. Magnetoencephalography and MRI will be used to evaluate potential biomarkers for intervention success. This trial has a Bayesian design: we will conduct multiple interim analyses to test for efficacy or futility of the trial. This is the first trial within the GRIP trial platform: a platform developing four to five different interventions for the most common symptoms in patients with diffuse glioma. DISCUSSION: The results of the GRIP on fatigue trial will provide information about the efficacy of this intervention on fatigue in patients with diffuse glioma. Multiple other outcomes and possible predictors of treatment success will also be explored. TRIAL REGISTRATION: Netherlands Trial Register NL8711 . Registered on 14 June 2020

    1p/19q loss within oligodendroglioma is predictive for response to first line temozolomide but not to salvage treatment

    No full text
    BACKGROUND: Combined loss of 1p/19q predicts an almost 100% response rate to first line procarbazine, CCNU and vincristine chemotherapy (PCV) chemotherapy in oligodendroglial tumours. We assessed the impact of 1p and 19q loss on the outcome to first line temozolomide (TMZ) chemotherapy and to second line PCV or TMZ in progressive oligodendroglial tumours. MATERIALS AND METHODS: Tumour samples from patients included in two prospective EORTC studies on first line and second line TMZ chemotherapy in recurrent oligodendroglioma were used for this study. Most patients in the first line TMZ trial received PCV at further progression. Loss of 1p and 19q was assessed on paraffin embedded tumour samples by fluorescent in situ hybridisation with locus specific probes for 1p36 and 19q13. RESULTS: Losses of 1p and 19q were mainly observed in morphologically classical oligodendrogliomas (OD). Thirteen out of 18 patients with 1p loss (72%) responded to first line temozolomide (p<0.01). Both response to second line salvage PCV or to second line temozolomide was limited, even in patients with combined 1p/19q loss. Patients with tumours with 1p loss treated with salvage PCV had improved PFS (p<0.05). More patients with 1p loss were alive at 60 and 120 months after initial surgery (p<0.001). CONCLUSION: Combined 1p/19q loss is mainly observed in classical OD. Responses to first line temozolomide are strongly correlated to loss of 1p. Response to second line alkylating treatment is modest even in tumours with 1p/19q loss. For further improvement of outcome in OD novel treatments are needed

    The TICking clock of EGFR therapy resistance in glioblastoma: Target Independence or target Compensation

    Get PDF
    Targeted therapy against driver mutations responsible for cancer progression has been shown to be effective in many tumor types. For glioblastoma (GBM), the epidermal growth factor receptor (EGFR) gene is the most frequently mutated oncogenic driver and has therefore been considered an attractive target for therapy. However, so far responses to EGFR-pathway inhibitors have been disappointing. We performed an exhaustive analysis of the mechanisms that might account for therapy resistance against EGFR inhibition. We define two major mechanisms of resistance and propose modalities to overcome them. The first resistance mechanism concerns target independence. In this case, cells have lost expression of the EGFR protein and experience no negative impact of EGFR targeting. Loss of extrachromosomally encoded EGFR as present in double minute DNA is a frequent mechanism for this type of drug resistance. The second mechanism concerns target compensation. In this case, cells will counteract EGFR inhibition by activation of compensatory pathways that render them independent of EGFR signaling. Compensatory pathway candidates are platelet-derived growth factor β (PDGFβ), Insulin-like growth factor 1 (IGFR1) and cMET and their downstream targets, all not commonly mutated at the time of diagnosis alongside EGFR mutation. Given that both mechanisms make cells independent of EGFR expression, other means have to be found to eradicate drug resistant cells. To this end we suggest rational strategies which include the use of multi-target therapies that hit truncation mutations (mechanism 1) or multi-target therapies to co-inhibit compensatory proteins (mechanism 2)
    corecore