129 research outputs found

    Tamoxifen Dose De-Escalation:An Effective Strategy for Reducing Adverse Effects?

    Get PDF
    Tamoxifen, a cornerstone in the adjuvant treatment of estrogen receptor-positive breast cancer, significantly reduces breast cancer recurrence and breast cancer mortality; however, its standard adjuvant dose of 20 mg daily presents challenges due to a broad spectrum of adverse effects, contributing to high discontinuation rates. Dose reductions of tamoxifen might be an option to reduce treatment-related toxicity, but large randomized controlled trials investigating the tolerability and, more importantly, efficacy of low-dose tamoxifen in the adjuvant setting are lacking. We conducted an extensive literature search to explore evidence on the tolerability and clinical efficacy of reduced doses of tamoxifen. In this review, we discuss two important topics regarding low-dose tamoxifen: (1) the incidence of adverse effects and quality of life among women using low-dose tamoxifen; and (2) the clinical efficacy of low-dose tamoxifen examined in the preventive setting and evaluated through the measurement of several efficacy derivatives. Moreover, practical tools for tamoxifen dose reductions in the adjuvant setting are provided and further research to establish optimal dosing strategies for individual patients are discussed

    Irinotecan pharmacokinetics-pharmacodynamics: the clinical relevance of prolonged exposure to SN-38

    Get PDF
    We have shown previously that the terminal disposition half-life of SN-38, the active metabolite of irinotecan, is much longer than earlier thought. Currently, it is not known whether this prolonged exposure has any relevance toward SN-38-induced toxicity. Here, we found that SN-38 concentrations present in human plasma for up to 3 weeks after a single irinotecan infusion induce significant cytotoxicity in vitro. Using pharmacokinetic data from 26 patients, with sampling up to 500 h, relationships were evaluated between systemic exposure (AUC) to SN-38 and the per cent decrease in absolute neutrophil count (ANC) at nadir, or by taking the entire time course of ANC into account (AOC). The time course of SN-38 concentrations (AUC500 h) was significantly related to this AOC (P<0.001). Based on these findings, a new limited-sampling model was developed for SN-38 AUC500 h using only two timed samples: AUC500 h=(6.588×C2.5 h)+(146.4×C49.5 h)+15.53, where C2.5 h and C49.5 h are plasma concentrations at 2.5 and 49.5 h after start of infusion, respectively. The use of this limited-sampling model may open up historic databases to retrospectively obtain information about SN-38-induced toxicity in patients treated with irinotecan

    A phase I pharmacokinetic and safety study of cabazitaxel in adult cancer patients with normal and impaired renal function

    Get PDF
    PURPOSE\textbf{PURPOSE} Limited data are available on cabazitaxel pharmacokinetics in patients with renal impairment. This open-label, multicenter study assessed cabazitaxel in patients with advanced solid tumors and normal or impaired renal function. METHODS\textbf{METHODS} Cohorts A (normal renal function: creatinine clearance [CrCL] >80 mL/min/1.73 m2^{2}), B (moderate renal impairment: CrCL 30 to <50 mL/min/1.73 m2^{2}) and C (severe impairment: CrCL <30 mL/min/1.73 m(2)) received cabazitaxel 25 mg/m2^{2} (A, B) or 20 mg/m(2) (C, could be escalated to 25 mg/m2^{2}), once every 3 weeks. Pharmacokinetic parameters and cabazitaxel unbound fraction (FU_{U}) were assessed using linear regression and mixed models. Geometric mean (GM) and GM ratios (GMRs) were determined using mean CrCL intervals (moderate and severe renal impairment: 40 and 15 mL/min/1.73 m2^{2}) versus a control (90 mL/min/1.73 m2^{2}). RESULTS\textbf{RESULTS} Overall, 25 patients received cabazitaxel (median cycles: 3 [range 1-20]; Cohort A: 5 [2-13]; Cohort B: 3 [1-15]; and Cohort C: 5 [1-20]), of which 24 were eligible for pharmacokinetic analysis (eight in each cohort). For moderate and severe renal impairment versus normal renal function, GMR estimates were: clearance normalized to body surface area (CL/BSA) 0.95 (90% CI 0.80-1.13) and 0.89 (0.61-1.32); area under the curve normalized to dose (AUC/dose) 1.06 (0.88-1.27) and 1.14 (0.76-1.71); and F U 0.99 (0.94-1.04) and 0.97 (0.87-1.09), respectively. Estimated slopes of linear regression of log parameters versus log CrCL (renal impairment) were: CL/BSA 0.06 (-0.15 to 0.28); AUC/dose -0.07 (-0.30 to 0.16); and F U 0.02 (-0.05 to 0.08). Cabazitaxel safety profile was consistent with previous reports. CONCLUSIONS\textbf{CONCLUSIONS} Renal impairment had no clinically meaningful effect on cabazitaxel pharmacokinetics.This study was supported by Sanofi. Javier Garcia-Corbacho acknowledges clinical fellowship support from SEOM. Experimental Cancer Medicine Centre (ECMC) and NIHR Biomedical Research Centre (BRC) funding is also acknowledged for the Cambridge Cancer Centre

    Darolutamide does not interfere with OATP-mediated uptake of docetaxel

    Get PDF
    The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug–drug interaction was identified

    Darolutamide does not interfere with OATP-mediated uptake of docetaxel

    Get PDF
    The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug–drug interaction was identified

    Neutrophil-guided dosing of anthracycline–cyclophosphamide-containing chemotherapy in patients with breast cancer: a feasibility study

    Get PDF
    The aim of this study was to investigate whether neutrophil-guided dose escalation of anthracycline–cyclophosphamide-containing chemotherapy (ACC) for breast cancer is feasible, in order to optimize outcome. Breast cancer patients planned for 3-weekly ACC were enrolled in this study. The first treatment cycle was administered in a standard BSA-adjusted dose. The absolute neutrophil count was measured at baseline and at day 8, 11 and 15 after administration of ACC. For patients with none or mild (CTC grade 0–2) neutropenia and no other dose-limiting toxicity, we performed a 10–25 % dose escalation of the second cycle with the opportunity to a further 10–25 % dose escalation of the third cycle. Thirty patients were treated in the adjuvant setting with either FE100C (n = 23) or AC (n = 4), or in the palliative setting with FAC (n = 3). Two out of 23 patients (9 %) treated with FEC did not develop grade 3–4 neutropenia after the first treatment cycle. Dose escalation was performed in these two patients (30 % in one and 15 % in the other patient). During dose escalation, there were no complications like febrile neutropenia. No patients treated with FAC or AC could be escalated, since all of them developed grade 3–4 neutropenia. We conclude that asymptomatic grade 3–4 neutropenia is likely to be achieved in the majority of patients with breast cancer treated with ACC according to presently advocated BSA-based dose levels. Escalation of currently advocated ACC doses without G-CSF, with a target of grade 3–4 neutropenia, is feasible, but only possible in a small proportion of patients. EudraCT 2010-020309-33

    Phase I and pharmacokinetic study of irinotecan in combination with R115777, a farnesyl protein transferase inhibitor

    Get PDF
    The aims of this study were to determine the maximum-tolerated dose (MTD), toxicity profile, and pharmacokinetics of irinotecan given with oral R115777 (tipifarnib), a farnesyl protein transferase inhibitor. Patients were treated with escalating doses of irinotecan with interval-modulated dosing of R115777 (continuously or on days 1-14, and repeated every 21 days). In total, 35 patients were entered onto the trial for a median duration of treatment of 43 days (range, 5-224 days). Neutropenia and thrombocytopenia were the dose-limiting toxicities; other side effects were mostly mild. The MTD was established at R115777 300 mg b.i.d. for 14 consecutive days with irinotecan 350 mg m-2 given every 3 weeks starting on day 1. Three patients had a partial response and 14 had stable disease. In the continuous schedule, the area under the curves of irinotecan and its active metabolite SN-38 were 20.0% (P = 0.004) and 38.0% (P < 0.001) increased by R115777, respectively. Intermittent dosing of R115777 at a dose of 300 mg b.i.d. for 14 days every 3 weeks is the recommended dose of R115777 in combination with the recommended single-agent irinotecan dose of 350 mg m-2

    A phase II irinotecan–cisplatin combination in advanced pancreatic cancer

    Get PDF
    We report a cisplatin and irinotecan combination in patients with biopsy-proven advanced pancreatic adenocarcinoma. Patients were selected from a specialist centre and required good performance status (KPS&gt;70%), measurable disease on CT scan, and biochemical and haematological parameters within normal limits. Based on a two-stage phase II design, we aimed to treat 22 patients initially. The study was stopped because of the death of the 19th patient during the first treatment cycle, with neutropenic sepsis and multiorgan failure. A total of 89 treatments were administered to 17 patients. Serious grade 3/4 toxicities were haematological (neutropenia) 6%, diarrhoea 6%, nausea 7% and vomiting 6%. Using the clinical benefit response (CBR) criteria, no patients had an overall CBR. For responses confirmed by CT examination, there was one partial response (5%), three stable diseases lasting greater than 6 weeks (16%), with an overall 22% with disease control (PR+SD). The median progression-free and overall survival was 3.1 months (95% CI: 1.3-3.7) and 5.0 (95% CI: 3.9-10.1) months, respectively. Although this synergistic combination has improved the response rates and survival of other solid tumours, we recommend caution when using this combination in the palliation of advanced pancreatic cancer, because of unexpected toxicity
    corecore