119 research outputs found
Where do small, weakly inertial particles go in a turbulent flow?
We report experimental results on the dynamics of heavy particles of the size
of the Kolmogorov-scale in a fully developed turbulent flow. The mixed Eulerian
structure function of two-particle velocity and acceleration difference vectors
was observed to increase significantly with particle
inertia for identical flow conditions. We show that this increase is related to
a preferential alignment between these dynamical quantities. With increasing
particle density the probability for those two vectors to be collinear was
observed to grow. We show that these results are consistent with the
preferential sampling of strain-dominated regions by inertial particles.Comment: 8 pages, 4 figures, accepted for publication JFM (fast-track
An instrumented tracer for Lagrangian measurements in Rayleigh-B\'enard convection
We have developed novel instrumentation for making Lagrangian measurements of
temperature in diverse fluid flows. A small neutrally buoyant capsule is
equipped with on-board electronics which measure temperature and transmit the
data via a wireless radio frequency link to a desktop computer. The device has
80 dB dynamic range, resolving milli-Kelvin changes in temperature with up to
100 ms sampling time. The capabilities of these "smart particles" are
demonstrated in turbulent thermal convection in water. We measure temperature
variations as the particle is advected by the convective motion, and analyse
its statistics. Additional use of cameras allow us to track the particle
position and to report here the first direct measurement of Lagrangian heat
flux transfer in Rayleigh-B{\'e}nard convection. The device shows promise for
opening new research in a broad variety of fluid systems.Comment: 14 page
Convection in a vertical channel
International audienceThe flow generated by heat convection in a long, vertical channel is studied by means of particle imagery velocimetry techniques, with the help of the thermal measurements from a previous paper (Gibert et al 2009 Phys. Fluids 21 035109). We analyse the mean velocity profiles and the Reynolds stresses, and compare the present results with the previous ones obtained in a larger cell and at a larger Reynolds number.We calculate the horizontal temperature profile and the related horizontal heat flux. The pertinence of effective turbulent diffusivity and viscosity is confirmed by the low value of the associated mixing length. We study the one-point and two-point statistics of both velocity components. We show how the concept of turbulent viscosity explains the relations between the local probability density functions (pdf) of fluctuations for temperature, vertical and horizontal velocity components. Despite the low Reynolds number values explored, some conclusions can be drawn about the small scale velocity differences and the related energy cascade
High-Rayleigh-Number Convection in a Vertical Channel
See Also * Phys. Rev. Focus 17, story 9International audienceWe measure the relation between convective heat flux and temperature gradient in a vertical channel filled with water, the average vertical mass flux being zero. Compared to the classical Rayleigh-BĂ©nard case, this situation has the advantage of avoiding plates and, thus, their neighborhood, in which is usually concentrated most of the temperature gradient. Consequently, inertial processes should control the convection, with poor influence of the viscosity. This idea gives a good account of our observations, if we consider that a natural vertical length, different from the channel width, appears. Our results also suggest that heat fluxes can be deduced from velocity measurements in free convective flows. This confers to our results a wide range of applications
Comparison between rough and smooth plates within the same Rayleigh-BĂ©nard cell
International audienceIn a Rayleigh-BĂ©nard cell at high Rayleigh number, the bulk temperature is nearly uniform. The mean temperature gradient differs from zero only in the thin boundary layers close to the plates. Measuring this bulk temperature allows to separately determine the thermal impedance of each plate. In this work, the bottom plate is rough and the top plate is smooth; both interact with the same bulk flow. We compare them and address in particular the question whether the influence of roughness goes through a modification of the bulk flow
Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow
We report a novel experimental technique that measures simultaneously in
three dimensions the trajectories, the translation, and the rotation of finite
size inertial particles together with the turbulent flow. The flow field is
analyzed by tracking the temporal evolution of small fluorescent tracer
particles. The inertial particles consist of a super-absorbent polymer that
renders them index and density matched with water and thus invisible. The
particles are marked by inserting at various locations tracer particles into
the polymer. Translation and rotation, as well as the flow field around the
particle are recovered dynamically from the analysis of the marker and tracer
particle trajectories. We apply this technique to study the dynamics of
inertial particles much larger in size (Rp/{\eta} \approx 100) than the
Kolmogorov length scale {\eta} in a von K\'arm\'an swirling water flow
(R{\lambda} \approx 400). We show, using the mixed (particle/fluid) Eulerian
second order velocity structure function, that the interaction zone between the
particle and the flow develops in a spherical shell of width 2Rp around the
particle of radius Rp. This we interpret as an indication of a wake induced by
the particle. This measurement technique has many additional advantages that
will make it useful to address other problems such as particle collisions,
dynamics of non-spherical solid objects, or even of wet granular matter.Comment: 18 pages, 7 figures, submitted to "Measurement Science and
Technology" special issue on "Advances in 3D velocimetry
Heat convection in a vertical channel : Plumes versus turbulent diffusion
11 pagesInternational audienceFollowing a previous study [Gibert , Phys. Rev. Lett. 96, 084501 (2006)], convective heat transfer in a vertical channel of moderate dimensions follows purely inertial laws. It would be therefore a good model for convective flows of stars and ocean. Here we report new measurements on this system. We use an intrinsic length in the definition of the characteristic Rayleigh and Reynolds numbers. We explicit the relation between this intrinsic length and the thermal correlation length. Using particle imaging velocimetry, we show that the flow undergoes irregular reversals. We measure the average velocity profiles and the Reynolds stress tensor components. The momentum flux toward the vertical walls seems negligible compared to the shear turbulent stress. A mixing length theory seems adequate to describe the horizontal turbulent heat and momentum fluxes, but fails for the vertical ones. We propose a naive model for vertical heat transport inspired by the Knudsen regime in gases
Entrainment, Diffusion and Effective Compressibility in a Self-Similar Turbulent Jet
An experimental Lagrangian study based on particle tracking velocimetry has been completed in an incompressible turbulent round water jet freely spreading into water. The jet is seeded with tracers only through the nozzle: inhomogeneous seeding called nozzle seeding. The Lagrangian flow tagged by these tracers therefore does not contain any contribution from particles entrained into the jet from the quiescent surrounding fluid. The mean velocity field of the nozzle seeded flow, âšUÏâ©, is found to be essentially indistinguishable from the global mean velocity field of the jet, âšUâ©, for the axial velocity while significant deviations are found for the radial velocity. This results in an effective compressibility of the nozzle seeded flow for which ââ
âšUÏâ©â 0 even though the global background flow is fully incompressible. By using mass conservation and self-similarity, we quantitatively explain the modified radial velocity profile and analytically express the missing contribution associated to entrained fluid particles. By considering a classical advection-diffusion description, we explicitly connect turbulent diffusion of mass (through the turbulent diffusivity KT) and momentum (through the turbulent viscosity ÎœT) to entrainment. This results in new practical relations to experimentally determine the non-uniform spatial profiles of KT and ÎœT (and hence of the turbulent Prandtl number ÏT=ÎœT/KT) from simple measurements of the mean tracer concentration and axial velocity profiles. Overall, the proposed approach based on nozzle seeded flow gives new experimental and theoretical elements for a better comprehension of turbulent diffusion and entrainment in turbulent jets
Lagrangian Diffusion Properties of a Free Shear Turbulent Jet
A Lagrangian experimental study of an axisymmetric turbulent water jet is performed to investigate the highly anisotropic and inhomogeneous flow field. Measurements are conducted within a Lagrangian exploration module, an icosahedron apparatus, to facilitate optical access of three cameras. Stereoscopic particle tracking velocimetry results in three-component tracks of position, velocity and acceleration of the tracer particles within the vertically oriented jet with a Taylor-based Reynolds number Reλâ230. Analysis is performed at seven locations from 15 diameters up to 45 diameters downstream. Eulerian analysis is first carried out to obtain critical parameters of the jet and relevant scales, namely the Kolmogorov and large (integral) scales as well as the energy dissipation rate. Lagrangian statistical analysis is then performed on velocity components stationarised following methods inspired by Batchelor (J. Fluid Mech., vol. 3, 1957, pp. 67â80), which aim to extend stationary Lagrangian theory of turbulent diffusion by Taylor to the case of self-similar flows. The evolution of typical Lagrangian scaling parameters as a function of the developing jet is explored and results show validation of the proposed stationarisation. The universal scaling constant C0 (for the Lagrangian second-order structure function), as well as Eulerian and Lagrangian integral time scales, are discussed in this context. Constant C0 is found to converge to a constant value (of the order of C0=3) within 30 diameters downstream of the nozzle. Finally, the occurrence of finite particle size effects is investigated through consideration of acceleration-dependent quantities
Hsp27 (HspB1) and αB-crystallin (HspB5) as therapeutic targets
AbstractHsp27 and αB-crystallin are molecular chaperones that are constitutively expressed in several mammalian cells, particularly in pathological conditions. These proteins share functions as diverse as protection against toxicity mediated by aberrantly folded proteins or oxidative-inflammation conditions. In addition, these proteins share anti-apoptotic properties and are tumorigenic when expressed in cancer cells. This review summarizes the current knowledge about Hsp27 and αB-crystallin and the implications, either positive or deleterious, of these proteins in pathologies such as neurodegenerative diseases, myopathies, asthma, cataracts and cancers. Approaches towards therapeutic strategies aimed at modulating the expression and/or the activities of Hsp27 and αB-crystallin are presented
- âŠ