17 research outputs found

    Semi-device-independent quantum money with coherent states

    Full text link
    The no-cloning property of quantum mechanics allows unforgeability of quantum banknotes and credit cards. Quantum credit card protocols involve a bank, a client and a payment terminal, and their practical implementation typically relies on encoding information on weak coherent states of light. Here, we provide a security proof in this practical setting for semi-device-independent quantum money with classical verification, involving an honest bank, a dishonest client and a potentially untrusted terminal. Our analysis uses semidefinite programming in the coherent state framework and aims at simultaneously optimizing over the noise and losses introduced by a dishonest party. We discuss secure regimes of operation in both fixed and randomized phase settings, taking into account experimental imperfections. Finally, we study the evolution of protocol security in the presence of a decohering optical quantum memory and identify secure credit card lifetimes for a specific configuration.Comment: 10 pages, 2 figure

    Experimental investigation of practical unforgeable quantum money

    Full text link
    Wiesner's unforgeable quantum money scheme is widely celebrated as the first quantum information application. Based on the no-cloning property of quantum mechanics, this scheme allows for the creation of credit cards used in authenticated transactions offering security guarantees impossible to achieve by classical means. However, despite its central role in quantum cryptography, its experimental implementation has remained elusive because of the lack of quantum memories and of practical verification techniques. Here, we experimentally implement a quantum money protocol relying on classical verification that rigorously satisfies the security condition for unforgeability. Our system exploits polarization encoding of weak coherent states of light and operates under conditions that ensure compatibility with state-of-the-art quantum memories. We derive working regimes for our system using a security analysis taking into account all practical imperfections. Our results constitute a major step towards a real-world realization of this milestone protocol.Comment: 10 pages, 5 figure

    Experimental cheat-sensitive quantum weak coin flipping

    Full text link
    As in modern communication networks, the security of quantum networks will rely on complex cryptographic tasks that are based on a handful of fundamental primitives. Weak coin flipping (WCF) is a significant such primitive which allows two mistrustful parties to agree on a random bit while they favor opposite outcomes. Remarkably, perfect information-theoretic security can be achieved in principle for quantum WCF. Here, we overcome conceptual and practical issues that have prevented the experimental demonstration of this primitive to date, and demonstrate how quantum resources can provide cheat sensitivity, whereby each party can detect a cheating opponent, and an honest party is never sanctioned. Such a property is not known to be classically achievable with information-theoretic security. Our experiment implements a refined, loss-tolerant version of a recently proposed theoretical protocol and exploits heralded single photons generated by spontaneous parametric down conversion, a carefully optimized linear optical interferometer including beam splitters with variable reflectivities and a fast optical switch for the verification step. High values of our protocol benchmarks are maintained for attenuation corresponding to several kilometers of telecom optical fiber.Comment: 17 pages, 9 figure

    Robust excitation of C-band quantum dots for quantum communication

    Full text link
    Building a quantum internet requires efficient and reliable quantum hardware, from photonic sources to quantum repeaters and detectors, ideally operating at telecommunication wavelengths. Thanks to their high brightness and single-photon purity, quantum dot (QD) sources hold the promise to achieve high communication rates for quantum-secured network applications. Furthermore, it was recently shown that excitation schemes, such as longitudinal acoustic phonon-assisted (LA) pumping, provide security benefits by scrambling the coherence between the emitted photon-number states. In this work, we investigate further advantages of LA-pumped quantum dots with emission in the telecom C-band as a core hardware component of the quantum internet. We experimentally demonstrate how varying the pump energy and spectral detuning with respect to the excitonic transition can improve quantum-secured communication rates and provide stable emission statistics regardless of network-environment fluctuations. These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks

    Sécurité et implémentation en cryptographie quantique avancée : monnaie quantique et tirage à pile ou face faible

    No full text
    Harnessing the laws of quantum theory can drastically boost the security of modern communication networks, from public key encryption to electronic voting and online banking. In this thesis, we bridge the gap between theory and experiment regarding two quantum-cryptographic tasks: quantum money and quantum weak coin flipping. Quantum money exploits the no-cloning property of quantum physics to generate unforgeable tokens, banknotes, and credit cards. We provide the first proof-of-principle implementation of this task, using photonic systems at telecom wavelengths. We then develop a practical security proof for quantum credit card schemes, in which the bank can remotely verify a card even in the presence of a malicious payment terminal. We finally propose a setup for secure quantum storage of the credit card, using electromagnetically-induced transparency in a cloud of cold cesium atoms. Quantum weak coin flipping is a fundamental cryptographic primitive, which helps construct more complex tasks such as bit commitment and multiparty computation. It allows two distant parties to flip a coin when they both desire opposite outcomes. Using quantum entanglement then prevents any party from biasing the outcome of the flip beyond a certain probability. We propose the first implementation for quantum weak coin flipping, which requires a single photon and linear optics only. We provide the complete security analysis in the presence of noise and losses, and show that the protocol is implementable on the scale of a small city with current technology. We finally propose a linear-optical extension of the protocol to lower the coin bias.Les lois de la mĂ©canique quantique prĂ©sentent un fort potentiel d’amĂ©lioration pour la sĂ©curitĂ© des rĂ©seaux de communication, du cryptage Ă  clĂ© publique au vote Ă©lectronique, en passant par la banque en ligne. Cette thĂšse porte sur la sĂ©curitĂ© pratique et l’implĂ©mentation de deux tĂąches cryptographiques quantiques : la monnaie quantique et le tirage Ă  pile-ou-face faible. La monnaie quantique exploite le thĂ©orĂšme de non-clonage quantique pour gĂ©nĂ©rer des jetons, billets ou cartes de crĂ©dit strictement infalsifiables. Nous rĂ©alisons la premiĂšre dĂ©monstration expĂ©rimentale de cette fonctionnalitĂ© sur une plateforme photonique aux longueurs d’onde tĂ©lĂ©com. Nous dĂ©veloppons ensuite une analyse de sĂ©curitĂ© pratique pour les cartes de crĂ©dit quantique. La banque peut ainsi vĂ©rifier l’authenticitĂ© de la carte Ă  distance, mĂȘme en prĂ©sence d’un terminal de paiement malhonnĂȘte. Enfin, nous proposons une expĂ©rience permettant le stockage sĂ©curisĂ© d’une carte de crĂ©dit quantique en utilisant la transparence Ă©lectromagnĂ©tiquement induite au sein d’un nuage d’atomes refroidis. Le tirage Ă  pile-ou-face faible est une primitive cryptographique fondamentale: elle permet en effet la construction de tĂąches plus complexes telles que la mise en gage de bit et le calcul multipartite sĂ©curisĂ©. Lors d’un tirage Ă  pile ou face, deux entitĂ©s distantes et mĂ©fiantes jettent une piĂšce. GrĂące Ă  l’intrication quantique, il est possible de limiter la probabilitĂ© que l’entitĂ© malhonnĂȘte biaise la piĂšce. Dans ce projet, nous proposons la premiĂšre implĂ©mentation du pile-ou-face faible. Celle-ci requiert un photon unique et une plateforme d’optique linĂ©aire. Nous prĂ©sentons l’analyse de sĂ©curitĂ© en prĂ©sence d’erreurs et de pertes, et dĂ©montrons que le protocole est rĂ©alisable Ă  l’échelle d’une ville. Enfin, nous proposons de rĂ©duire davantage la probabilitĂ© du biais du protocole

    Sécurité et implémentation en cryptographie quantique avancée : monnaie quantique et tirage à pile ou face faible

    No full text
    Harnessing the laws of quantum theory can drastically boost the security of modern communication networks, from public key encryption to electronic voting and online banking. In this thesis, we bridge the gap between theory and experiment regarding two quantum-cryptographic tasks: quantum money and quantum weak coin flipping. Quantum money exploits the no-cloning property of quantum physics to generate unforgeable tokens, banknotes, and credit cards. We provide the first proof-of-principle implementation of this task, using photonic systems at telecom wavelengths. We then develop a practical security proof for quantum credit card schemes, in which the bank can remotely verify a card even in the presence of a malicious payment terminal. We finally propose a setup for secure quantum storage of the credit card, using electromagnetically-induced transparency in a cloud of cold cesium atoms. Quantum weak coin flipping is a fundamental cryptographic primitive, which helps construct more complex tasks such as bit commitment and multiparty computation. It allows two distant parties to flip a coin when they both desire opposite outcomes. Using quantum entanglement then prevents any party from biasing the outcome of the flip beyond a certain probability. We propose the first implementation for quantum weak coin flipping, which requires a single photon and linear optics only. We provide the complete security analysis in the presence of noise and losses, and show that the protocol is implementable on the scale of a small city with current technology. We finally propose a linear-optical extension of the protocol to lower the coin bias.Les lois de la mĂ©canique quantique prĂ©sentent un fort potentiel d’amĂ©lioration pour la sĂ©curitĂ© des rĂ©seaux de communication, du cryptage Ă  clĂ© publique au vote Ă©lectronique, en passant par la banque en ligne. Cette thĂšse porte sur la sĂ©curitĂ© pratique et l’implĂ©mentation de deux tĂąches cryptographiques quantiques : la monnaie quantique et le tirage Ă  pile-ou-face faible. La monnaie quantique exploite le thĂ©orĂšme de non-clonage quantique pour gĂ©nĂ©rer des jetons, billets ou cartes de crĂ©dit strictement infalsifiables. Nous rĂ©alisons la premiĂšre dĂ©monstration expĂ©rimentale de cette fonctionnalitĂ© sur une plateforme photonique aux longueurs d’onde tĂ©lĂ©com. Nous dĂ©veloppons ensuite une analyse de sĂ©curitĂ© pratique pour les cartes de crĂ©dit quantique. La banque peut ainsi vĂ©rifier l’authenticitĂ© de la carte Ă  distance, mĂȘme en prĂ©sence d’un terminal de paiement malhonnĂȘte. Enfin, nous proposons une expĂ©rience permettant le stockage sĂ©curisĂ© d’une carte de crĂ©dit quantique en utilisant la transparence Ă©lectromagnĂ©tiquement induite au sein d’un nuage d’atomes refroidis. Le tirage Ă  pile-ou-face faible est une primitive cryptographique fondamentale: elle permet en effet la construction de tĂąches plus complexes telles que la mise en gage de bit et le calcul multipartite sĂ©curisĂ©. Lors d’un tirage Ă  pile ou face, deux entitĂ©s distantes et mĂ©fiantes jettent une piĂšce. GrĂące Ă  l’intrication quantique, il est possible de limiter la probabilitĂ© que l’entitĂ© malhonnĂȘte biaise la piĂšce. Dans ce projet, nous proposons la premiĂšre implĂ©mentation du pile-ou-face faible. Celle-ci requiert un photon unique et une plateforme d’optique linĂ©aire. Nous prĂ©sentons l’analyse de sĂ©curitĂ© en prĂ©sence d’erreurs et de pertes, et dĂ©montrons que le protocole est rĂ©alisable Ă  l’échelle d’une ville. Enfin, nous proposons de rĂ©duire davantage la probabilitĂ© du biais du protocole

    Experimental cheat-sensitive quantum weak coin flipping

    No full text
    Quantum-enhanced versions of weak coin flipping (a cryptographic primitive where two mistrustful parties agree on a random bit while favouring opposite outcomes) have been proposed in the past but never realised. Here, the authors fill this gap by improving on a previous proposal and implementing it with single photons in a fibre-based setup
    corecore