51 research outputs found
In-situ X-ray Video Microscopy Studies of Al-Si Eutectic Solidification
In-situ studies of Al-Si eutectic growth has been carried out for the first time by X-ray video microscopy during directional solidification of Al-Si-Cu alloys with and without Sr-addtions. The unmodified eutectics showed distinctive non-isothermal growth dynamics, where Si-crystals attained needle-like tip morphologies and progressed under significantly higher undercooling than Al, leading to formation of an irregular eutectic with Si as the leading phase and subsequent nucleation of Al on the Si-surfaces. In the Sr-modified alloys, the eutectic reaction was found to be strongly suppressed, occurring with low nucleation frequencies at undercoolings in the range 10-18 K. In the Cu-enriched melt, the eutectic front was found to attain meso-scale interface perturbations evolving into equiaxed cellular rosettes in order to accommodate to the long-range redistribution of Cu from the composite eutectic interface. The eutectic front also attained short-range microscale interface perturbations consistent with characteristics of a fibrous Si growth, however further improvements in spatial resolution is required in order to study microscale structure formation in greater detail. Evidence was found in support of Si-nucleation occurring on potent particles suspended in the melt. Yet, both with Sr- modified and unmodified alloys, Si precipitation alone was not sufficient to facilitate the eutectic reaction, which apparently required additional undercooling for Al to form on the Si-particles. To what extent nucleation mechanisms in the Cu-enriched systems are transferable to binary or commercial Al-Si alloys remains uncertain
Revealing internal flow behaviour in arc welding and additive manufacturing of metals
Internal flow behaviour during melt-pool-based metal manufacturing remains unclear and hinders progression to process optimisation. In this contribution, we present direct time-resolved imaging of melt pool flow dynamics from a high-energy synchrotron radiation experiment. We track internal flow streams during arc welding of steel and measure instantaneous flow velocities ranging from 0.1βmβsβ1 to 0.5βmβsβ1. When the temperature-dependent surface tension coefficient is negative, bulk turbulence is the main flow mechanism and the critical velocity for surface turbulence is below the limits identified in previous theoretical studies. When the alloy exhibits a positive temperature-dependent surface tension coefficient, surface turbulence occurs and derisory oxides can be entrapped within the subsequent solid as result of higher flow velocities. The widely used arc welding and the emerging arc additive manufacturing routes can be optimised by controlling internal melt flow through adjusting surface active elements
Soft particles assisted grain refinement and strengthening of an Al-Bi-Zn alloy subjected to ECAP
acceptedVersio
Heterogeneous nucleation and grain growth of inoculated aluminium alloys: An integrated study by in-situ X-radiography and numerical modelling
A comprehensive study on the heterogeneous nucleation and grain growth of Al-10 wt.%Cu alloys inoculated with Al-5Ti-1B was carried out. To further reveal the solute segregation stifling mechanism, in-situ near-isothermal melt solidification experiments with constant cooling rates and greatly suppressed melt convection were realized by in-situ microfocus X-radiography study. The kinetics of heterogeneous nucleation and grain growth under the isolated influence of cooling rate and addition level of inoculant particles has been quantitatively studied. Moreover, novel image processing and analysis approaches have been proposed, to determine the maximum nucleation undercooling and solid volume fraction at nucleation ceasing. To better understand the heterogeneous nucleation and grain growth behaviors under the in-situ experiment conditions, a new grain size prediction model in which both pure globular growth kinetics and dendritic growth kinetics including spherical/globular to dendritic transition (GDT) has been developed. The quantitative agreements between the simulation results and experimental results in terms of grain size, maximum nucleation undercooling and solid fraction at nucleation ceasing, have confirmed the validity of the solute segregation stifling mechanism for castings without recalescence. Furthermore, it is demonstrated that globular growth kinetics is an acceptable approximation for grain size prediction purposes of well grain-refined aluminum alloys. However, for poorly inoculated aluminum alloys with well-developed coarse dendritic grains, an application of dendritic growth kinetics significantly improves the grain size prediction power of the model.acceptedVersio
Analytical transmission cross-coefficients for pink beam X-ray microscopy based on compound refractive lenses
Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum. The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-coefficients, a compact analytical expression for the modulation transfer function of the system is obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical expressions for optimal numerical aperture, coherence ratio, and bandwidth are given
Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification
An in-situ study on the directional solidification of an inoculated Al-20β―wt%Cu alloy under well-controlled constant cooling rates and temperature gradients has been carried out using a microfocus X-radiography set-up. The influences of temperature gradient and cooling rate on the heterogeneous nucleation rate and growth kinetics of equiaxed grains have been studied quantitatively. It is shown that under the same cooling rate, the nucleation rate of grains decreases with increasing temperature gradient. A high temperature gradient also promotes preferential growth of dendrite arms along the temperature gradient direction, and therefore the formation of elongated grains. However, the temperature gradient effects on nucleation and grain growth decrease with increasing cooling rate. It is revealed that the propagation velocity of the nucleation front in directional solidification castings is approximately equal to the ratio between cooling rate αΉͺ and temperature gradient . Based on the experimental observations, a novel numerical grain size prediction model has been proposed, in which the temperature gradient effect on the nucleation kinetics was rigorously treated by introducing two new concepts termed as βinhibited nucleation zoneβ (INZ) and βactive nucleation zoneβ (ANZ). The model has been applied to simulate the present in-situ solidification experiments. A good agreement was achieved between the predicted grain number density and the experimental measurements, showing the importance of including the temperature gradient effect on heterogeneous nucleation. Furthermore, the present model also has the capability to predict the temperature gradient necessary for the transition from equiaxed to columnar grain growth.submittedVersionThis is a submitted manuscript of an article published by Elsevier Ltd in Acta Materiala, 1 May 201
- β¦