1,465 research outputs found

    The Effects of Clumping and Substructure on ICM Mass Measurements

    Get PDF
    We examine an ensemble of 48 simulated clusters to determine the effects of small-scale density fluctuations and large-scale substructure on X-ray measurements of the intracluster medium (ICM) mass. We measure RMS density fluctuations in the ICM which can be characterized by a mean mass-weighted clumping factor C = /^2 between 1.3 and 1.4 within a density contrast of 500 times the critical density. These fluctuations arise from the cluster history of accretion shocks and major mergers, and their presence enhances the cluster's luminosity relative to the smooth case. We expect, therefore, that ICM mass measurements utilizing models which assume uniform density at a given radius carry a bias of order sqrt(C) = 1.16. We verify this result by performing ICM mass measurements on X-ray images of the simulations and finding the expected level of bias. The varied cluster morphologies in our ensemble also allow us to investigate the effects of departures from spherical symmetry on our measurements. We find that the presence of large-scale substructure does not further bias the resulting gas mass unless it is pronounced enough to produce a second peak in the image of at least 1% the maximum surface brightness. We analyze the subset of images with no secondary peaks and find a bias of 9% and a Gaussian random error of 4% in the derived mass.Comment: To appear in ApJ

    Heavy oil production with energy effective steam-assisted gravity drainage

    Full text link
    In reservoirs with extra heavy oil and bitumen, thermal methods are used to reduce the viscosity, in order to extract the oil. Steam-assisted gravity drainage (SAGD) is a thermal method where continuous steam injection is used. In this method, two horizontal wells are placed in parallel. The upper well injects steam and the lower well produces oil and condensed water. The continuous steam injection creates a chamber with uniform temperature. Heavy oil and bitumen reserves in Western Canada, which exceed 175 billion barrels, are becoming increasingly important petroleum sources due to the technical success of the SAGD processes. This study includes Computational fluid dynamics (CFD) modelling and simulations of a horizontal oil well with SAGD. The simulations are performed with inflow control devices (ICD) and autonomous inflow control valves (AICV) completion. In the SAGD processes, it is important that the residence time for steam in the reservoir is high enough to ensure that all the injected steam condenses in the reservoir to reduce the amount of steam injection and thereby making the SAGD process more energy effective. The simulations are carried out with ICD completion to delay the steam breakthrough and with AICV completion to prevent breakthrough of steam and water to the well. The numerical results showed that a most of the steam was produced together with the oil when ICD completion was used. AICV was able to close for steam and water, and the steam was thereby forced to condense in the reservoir, resulting in better utilization of the condensation energy

    Constraints on \Omega_0 and Cluster Evolution Using the ROSAT LogN-LogS

    Full text link
    We examine the likelihoods of different cosmological models and cluster evolutionary histories by comparing semi-analytical predictions of X-ray cluster number counts to observational data from the ROSAT satellite. We model cluster abundance as a function of mass and redshift using a Press-Schechter distribution, and assume the temperature T(M,z) and bolometric luminosity L_X(M,z) scale as power laws in mass and epoch, in order to construct expected counts as a function of X-ray flux. The L_X-M scaling is fixed using the local luminosity function while the degree of evolution in the X-ray luminosity with redshift L_X \propto (1+z)^s is left open, with s an interesting free parameter which we investigate. We examine open and flat cosmologies with initial, scale-free fluctuation spectra having indices n = 0, -1 and -2. An independent constraint arising from the slope of the luminosity-temperature relation strongly favors the n = -2 spectrum. The expected counts demonstrate a strong dependence on \Omega_0 and s, with lesser dependence on \lambda_0 and n. Comparison with the observed counts reveals a "ridge" of acceptable models in the \Omega_0 - s plane, roughly following the relation s = 6 \Omega_0 and spanning low-density models with a small degree of evolution to \Omega = 1 models with strong evolution. Models with moderate evolution are revealed to have a strong lower limit of \Omega_0 \gtrsim 0.3, and low-evolution models imply that \Omega_0 < 1 at a very high confidence level. We suggest observational tests for breaking the degeneracy along this ridge, and discuss implications for evolutionary histories of the intracluster medium.Comment: MNRAS LaTeX style format, submitted to MNRAS 3/26/97. Thirteen pages, eleven postscript figures. Uses epsf macros to include figure

    Roughening of Fracture Surfaces: the Role of Plastic Deformations

    Full text link
    Post mortem analysis of fracture surfaces of ductile and brittle materials on the μ\mum-mm and the nm scales respectively, reveal self affine graphs with an anomalous scaling exponent ζ0.8\zeta\approx 0.8. Attempts to use elasticity theory to explain this result failed, yielding exponent ζ0.5\zeta\approx 0.5 up to logarithms. We show that when the cracks propagate via plastic void formations in front of the tip, followed by void coalescence, the voids positions are positively correlated to yield exponents higher than 0.5.Comment: 4 pages, 6 figure

    Scale Free Cluster Distributions from Conserving Merging-Fragmentation Processes

    Full text link
    We propose a dynamical scheme for the combined processes of fragmentation and merging as a model system for cluster dynamics in nature and society displaying scale invariant properties. The clusters merge and fragment with rates proportional to their sizes, conserving the total mass. The total number of clusters grows continuously but the full time-dependent distribution can be rescaled over at least 15 decades onto a universal curve which we derive analytically. This curve includes a scale free solution with a scaling exponent of -3/2 for the cluster sizes.Comment: 4 pages, 3 figure

    Four Measures of the Intracluster Medium Temperature and Their Relation to a Cluster's Dynamical State

    Get PDF
    We employ an ensemble of hydrodynamic cluster simulations to create spatially and spectrally resolved images of quality comparable to Chandra's expected performance. Emission from simulation mass elements is represented using the XSPEC mekal program assuming 0.3 solar metallicity, and the resulting spectra are fit with a single-temperature model. Despite significant departures from isothermality in the cluster gas, single-temperature models produce acceptable fits to 20,000 source photon spectra. The spectral fit temperature T_s is generally lower than the mass weighted average temperature T_m due to the influence of soft line emission from cooler gas being accreted as part of the hierarchical clustering process. In a Chandra-like bandpass of 0.5 to 9.5 keV we find a nearly uniform fractional bias of (T_m-T_s)/T_s = 20% with occasional large deviations in smaller clusters. In the more traditional 2.0 to 9.5 keV bandpass, the fractional deviation is scale-dependent and on average follows the relation (T_m-T_s)/T_s = 0.2 log(T_m). This bias results in a spectral mass-temperature relationship with slope about 1.6, intermediate between the virial relation M ~ T_m^{3/2} and the observed relation M_{ICM} ~ T^2. Imaging each cluster in the ensemble at 16 epochs in its evolutionary history, we catalogue merger events with mass ratios exceeding 10% in order to investigate the relationship between spectral temperature and proximity to a major merger event. Clusters that are very cool relative to the mean mass-temperature relationship lie preferentially close to a merger, suggesting a viable observational method to cull a subset of dynamically young clusters from the general population.Comment: 34 pages, including 2 tables and 14 figures (one in color). Compiled using LaTeX 2.09 with graphics package and aaspp4 style. The simulated spectral data files used in this paper are available for public consumption at http://redshift.stanford.edu/bfm

    Comparing the temperatures of galaxy clusters from hydro-N-body simulations to Chandra and XMM-Newton observations

    Full text link
    Theoretical studies of the physical processes guiding the formation and evolution of galaxies and galaxy clusters in the X-ray are mainly based on the results of numerical hydrodynamical N-body simulations, which in turn are often directly compared to X-ray observations. Although trivial in principle, these comparisons are not always simple. We demonstrate that the projected spectroscopic temperature of thermally complex clusters obtained from X-ray observations is always lower than the emission-weighed temperature, which is widely used in the analysis of numerical simulations. We show that this temperature bias is mainly related to the fact that the emission-weighted temperature does not reflect the actual spectral properties of the observed source. This has important implications for the study of thermal structures in clusters, especially when strong temperature gradients, like shock fronts, are present. Because of this bias, in real observations shock fronts appear much weaker than what is predicted by emission-weighted temperature maps, and may even not be detected. This may explain why, although numerical simulations predict that shock fronts are a quite common feature in clusters of galaxies, to date there are very few observations of objects in which they are clearly seen. To fix this problem we propose a new formula, the spectroscopic-like temperature function, and show that, for temperature larger than 3 keV, it approximates the spectroscopic temperature better than few per cent, making simulations more directly comparable to observations.Comment: Submitted for publication in MNRAS; 15 pages, 10 color figures and 13 BW figures,mn2e.cls. High resolution figures available here: http://people.roma2.infn.it/~mazzotta/preprints/mazzotta.pd

    Taxonomy and evolutionary relationships within species of section Rimosae (Inocybe) based on ITS, LSU and mtSSU sequence data

    Get PDF
    The present study aimed at elucidating the structure of Inocybe subg. Inosperma sect. Rimosae but included also representatives from subg. Mallocybe and the genus Auritella. Phylogenetic relationships were inferred using ITS, LSU and mtSSU sequence data. The analyses recovered the ingroup as a monophyletic, strongly supported clade. The results indicate that recognizing Auritella on the genus level renders Inocybe paraphyletic. The species traditionally placed in sect. Rimosae were found to be distributed over two strongly supported clades, Maculata and Rimosae s.s. The Maculata clade clusters with sect. Cervicolores and the two represent subg. Inosperma in a strict sense. Rimosae s.s. emerges as an independent, supported clade well separated from Inosperma s.s. Twenty-one terminal groups were correlated with morphologically distinct species. In addition several taxa on single branches and minor less supported clades were recovered. A key to the identified species of the Maculata and Rimosae s.s. clades which occur in Northwest Europe is provided
    corecore