7,267 research outputs found
On the relative strengths of fragments of collection
Let be the basic set theory that consists of the axioms of
extensionality, emptyset, pair, union, powerset, infinity, transitive
containment, -separation and set foundation. This paper studies the
relative strength of set theories obtained by adding fragments of the
set-theoretic collection scheme to . We focus on two common
parameterisations of collection: -collection, which is the usual
collection scheme restricted to -formulae, and strong
-collection, which is equivalent to -collection plus
-separation. The main result of this paper shows that for all ,
(1) proves the consistency of Zermelo Set Theory plus
-collection,
(2) the theory is
-conservative over the theory .
It is also shown that (2) holds for when the Axiom of Choice is
included in the base theory. The final section indicates how the proofs of (1)
and (2) can be modified to obtain analogues of these results for theories
obtained by adding fragments of collection to a base theory (Kripke-Platek Set
Theory with Infinity and ) that does not include the powerset axiom.Comment: 22 page
Definable orthogonality classes in accessible categories are small
We lower substantially the strength of the assumptions needed for the
validity of certain results in category theory and homotopy theory which were
known to follow from Vopenka's principle. We prove that the necessary
large-cardinal hypotheses depend on the complexity of the formulas defining the
given classes, in the sense of the Levy hierarchy. For example, the statement
that, for a class S of morphisms in a locally presentable category C of
structures, the orthogonal class of objects is a small-orthogonality class
(hence reflective) is provable in ZFC if S is \Sigma_1, while it follows from
the existence of a proper class of supercompact cardinals if S is \Sigma_2, and
from the existence of a proper class of what we call C(n)-extendible cardinals
if S is \Sigma_{n+2} for n bigger than or equal to 1. These cardinals form a
new hierarchy, and we show that Vopenka's principle is equivalent to the
existence of C(n)-extendible cardinals for all n. As a consequence, we prove
that the existence of cohomological localizations of simplicial sets, a
long-standing open problem in algebraic topology, is implied by the existence
of arbitrarily large supercompact cardinals. This result follows from the fact
that cohomology equivalences are \Sigma_2. In contrast with this fact, homology
equivalences are \Sigma_1, from which it follows (as is well known) that the
existence of homological localizations is provable in ZFC.Comment: 38 pages; some results have been improved and former inaccuracies
have been correcte
Pressure buildup during CO2 injection in brine aquifers using the Forchheimer equation
If geo-sequestration of CO2 is to be employed as a key emissions reduction method in the global effort to mitigate climate change, simple yet robust screening of the risks of disposal in brine aquifers will be needed. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO2 plumes for the purpose of leakage rate estimation. A common assumption has been that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In this talk, a new similarity solution is derived using the method of matched asymptotic expansions. By allowing for slight compressibility in the fluids and formation, the solution improves on previous work by not requiring the specification of an arbitrary radius of influence. A large-time approximation of the solution is then extended to account for non-Darcy inertial effects using the Forchheimer equation. Both solutions are verified by comparison with finite difference solutions. The results show that inertial losses will often be comparable, and sometimes greater than, the viscous Darcy-like losses associated with the brine displacement, although this is strongly dependent on formation porosity and permeability
Locating regions in a sequence under density constraints
Several biological problems require the identification of regions in a
sequence where some feature occurs within a target density range: examples
including the location of GC-rich regions, identification of CpG islands, and
sequence matching. Mathematically, this corresponds to searching a string of 0s
and 1s for a substring whose relative proportion of 1s lies between given lower
and upper bounds. We consider the algorithmic problem of locating the longest
such substring, as well as other related problems (such as finding the shortest
substring or a maximal set of disjoint substrings). For locating the longest
such substring, we develop an algorithm that runs in O(n) time, improving upon
the previous best-known O(n log n) result. For the related problems we develop
O(n log log n) algorithms, again improving upon the best-known O(n log n)
results. Practical testing verifies that our new algorithms enjoy significantly
smaller time and memory footprints, and can process sequences that are orders
of magnitude longer as a result.Comment: 17 pages, 8 figures; v2: minor revisions, additional explanations; to
appear in SIAM Journal on Computin
Noise and thermal stability of vibrating micro-gyrometers preamplifiers
The preamplifier is a critical component of gyrometer's electronics. Indeed
the resolution of the sensor is limited by its signal to noise ratio, and the
gyrometer's thermal stability is limited by its gain drift. In this paper, five
different kinds of preamplifiers are presented and compared. Finally, the
design of an integrated preamplifier is shown in order to increase the gain
stability while reducing its noise and size.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals
In the path integral formulation of the evolution of an open quantum system
coupled to a Gaussian, non-interacting environment, the dynamical contribution
of the latter is encoded in an object called the influence functional. Here, we
relate the influence functional to the process tensor -- a more general
representation of a quantum stochastic process -- describing the evolution. We
then use this connection to motivate a tensor network algorithm for the
simulation of multi-time correlations in open systems, building on recent work
where the influence functional is represented in terms of time evolving matrix
product operators. By exploiting the symmetries of the influence functional, we
are able to use our algorithm to achieve orders-of-magnitude improvement in the
efficiency of the resulting numerical simulation. Our improved algorithm is
then applied to compute exact phonon emission spectra for the spin-boson model
with strong coupling, demonstrating a significant divergence from spectra
derived under commonly used assumptions of memorylessness.Comment: 6+5 pages, 4 figure
A discrete memory-kernel for multi-time correlations in non-Markovian quantum processes
Efficient simulations of the dynamics of open systems is of wide importance
for quantum science and tech-nology. Here, we introduce a generalization of the
transfer-tensor, or discrete-time memory kernel, formalism to multi-time
measurement scenarios. The transfer-tensor method sets out to compute the state
of an open few-body quantum system at long times, given that only short-time
system trajectories are available. Here, we showthat the transfer-tensor method
can be extended to processes which include multiple interrogations (e.g.
measurements) of the open system dynamics as it evolves, allowing us to
propagate high order short-time correlation functions to later times, without
further recourse to the underlying system-environment evolution. Our approach
exploits the process-tensor description of open quantum processes to represent
and propagate the dynamics in terms of an object from which any multi-time
correlation can be extracted. As an illustration of the utility of the method,
we study the build-up of system-environment correlations in the paradigmatic
spin-boson model, and compute steady-state emission spectra, taking fully into
account system-environment correlations present in the steady state.Comment: 9 pages, 2 figure
Protocol for the Reconstructing Consciousness and Cognition (ReCCognition) Study
Important scientific and clinical questions persist about general anesthesia despite the ubiquitous clinical use of anesthetic drugs in humans since their discovery. For example, it is not known how the brain reconstitutes consciousness and cognition after the profound functional perturbation of the anesthetized state, nor has a specific pattern of functional recovery been characterized. To date, there has been a lack of detailed investigation into rates of recovery and the potential orderly return of attention, sensorimotor function, memory, reasoning and logic, abstract thinking, and processing speed. Moreover, whether such neurobehavioral functions display an invariant sequence of return across individuals is similarly unknown. To address these questions, we designed a study of healthy volunteers undergoing general anesthesia with electroencephalography and serial testing of cognitive functions (NCT01911195). The aims of this study are to characterize the temporal patterns of neurobehavioral recovery over the first several hours following termination of a deep inhaled isoflurane general anesthetic and to identify common patterns of cognitive function recovery. Additionally, we will conduct spectral analysis and reconstruct functional networks from electroencephalographic data to identify any neural correlates (e.g., connectivity patterns, graph-theoretical variables) of cognitive recovery after the perturbation of general anesthesia. To accomplish these objectives, we will enroll a total of 60 consenting adults aged 20–40 across the three participating sites. Half of the study subjects will receive general anesthesia slowly titrated to loss of consciousness (LOC) with an intravenous infusion of propofol and thereafter be maintained for 3 h with 1.3 age adjusted minimum alveolar concentration of isoflurane, while the other half of subjects serves as awake controls to gauge effects of repeated neurobehavioral testing, spontaneous fatigue and endogenous rest-activity patterns
Dynamical Surface Gravity in Spherically Symmetric Black Hole Formation
We study dynamical surface gravity in a general spherically symmetric setting
using Painlev\'{e}-Gullstrand (PG) coordinates. Our analysis includes several
definitions that have been proposed in the past as well as two new definitions
adapted to PG coordinates. Various properties are considered, including general
covariance, value at extremality, locality and static limit. We illustrate with
specific examples of "dirty" black holes that even for spacetimes possessing a
global timelike Killing vector, local definitions of surface gravity can differ
substantially from "non-local" ones that require an asymptotic normalization
condition. Finally, we present numerical calculations of dynamical surface
gravity for black hole formation via spherically symmetric scalar field
collapse. Our results highlight the differences between the various definitions
in a dynamical setting and provide further insight into the distinction between
local and non-local definitions of surface gravity.Comment: Final version to appear in Phys. Rev. D. Slight name change, further
improvements to numerics and presentation, 25 pages, 7 figure
Selfdual 2-form formulation of gravity and classification of energy-momentum tensors
It is shown how the different irreducibility classes of the energy-momentum
tensor allow for a Lagrangian formulation of the gravity-matter system using a
selfdual 2-form as a basic variable. It is pointed out what kind of
difficulties arise when attempting to construct a pure spin-connection
formulation of the gravity-matter system. Ambiguities in the formulation
especially concerning the need for constraints are clarified.Comment: title changed, extended versio
- …