10 research outputs found

    Automatic assessment of the 2-minute walk distance for remote monitoring of people with multiple sclerosis

    Get PDF
    The aim of this study was to investigate the feasibility of automatically assessing the 2-Minute Walk Distance (2MWD) for monitoring people with multiple sclerosis (pwMS). For 154 pwMS, MS-related clinical outcomes as well as the 2MWDs as evaluated by clinicians and derived from accelerometer data were collected from a total of 323 periodic clinical visits. Accelerometer data from a wearable device during 100 home-based 2MWD assessments were also acquired. The error in estimating the 2MWD was validated for walk tests performed at hospital, and then the correlation (r) between clinical outcomes and home-based 2MWD assessments was evaluated. Robust performance in estimating the 2MWD from the wearable device was obtained, yielding an error of less than 10% in about two-thirds of clinical visits. Correlation analysis showed that there is a strong association between the actual and the estimated 2MWD obtained either at hospital (r = 0.71) or at home (r = 0.58). Furthermore, the estimated 2MWD exhibits moderate-to-strong correlation with various MS-related clinical outcomes, including disability and fatigue severity scores. Automatic assessment of the 2MWD in pwMS is feasible with the usage of a consumer-friendly wearable device in clinical and non-clinical settings. Wearable devices can also enhance the assessment of MS-related clinical outcomes

    Automatic Assessment of the 2-Minute Walk Distance for Remote Monitoring of People with Multiple Sclerosis

    Get PDF
    The aim of this study was to investigate the feasibility of automatically assessing the 2-Minute Walk Distance (2MWD) for monitoring people with multiple sclerosis (pwMS). For 154 pwMS, MS-related clinical outcomes as well as the 2MWDs as evaluated by clinicians and derived from accelerometer data were collected from a total of 323 periodic clinical visits. Accelerometer data from a wearable device during 100 home-based 2MWD assessments were also acquired. The error in estimating the 2MWD was validated for walk tests performed at hospital, and then the correlation (r) between clinical outcomes and home-based 2MWD assessments was evaluated. Robust performance in estimating the 2MWD from the wearable device was obtained, yielding an error of less than 10% in about two-thirds of clinical visits. Correlation analysis showed that there is a strong association between the actual and the estimated 2MWD obtained either at hospital (r = 0.71) or at home (r = 0.58). Furthermore, the estimated 2MWD exhibits moderate-to-strong correlation with various MS-related clinical outcomes, including disability and fatigue severity scores. Automatic assessment of the 2MWD in pwMS is feasible with the usage of a consumer-friendly wearable device in clinical and non-clinical settings. Wearable devices can also enhance the assessment of MS-related clinical outcomes

    Autonomic response to walk tests is useful for assessing outcome measures in people with multiple sclerosis

    Get PDF
    Objective: The aim of this study was to evaluate the association between changes in the autonomic control of cardiorespiratory system induced by walk tests and outcome measures in people with Multiple Sclerosis (pwMS).Methods: Electrocardiogram (ECG) recordings of 148 people with Relapsing-Remitting MS (RRMS) and 58 with Secondary Progressive MS (SPMS) were acquired using a wearable device before, during, and after walk test performance from a total of 386 periodical clinical visits. A subset of 90 participants repeated a walk test at home. Various MS-related symptoms, including fatigue, disability, and walking capacity were evaluated at each clinical visit, while heart rate variability (HRV) and ECG-derived respiration (EDR) were analyzed to assess autonomic nervous system (ANS) function. Statistical tests were conducted to assess differences in ANS control between pwMS grouped based on the phenotype or the severity of MS-related symptoms. Furthermore, correlation coefficients (r) were calculated to assess the association between the most significant ANS parameters and MS-outcome measures.Results: People with SPMS, compared to RRMS, reached higher mean heart rate (HRM) values during walk test, and larger sympathovagal balance after test performance. Furthermore, pwMS who were able to adjust their HRM and ventilatory values, such as respiratory rate and standard deviation of the ECG-derived respiration, were associated with better clinical outcomes. Correlation analyses showed weak associations between ANS parameters and clinical outcomes when the Multiple Sclerosis phenotype is not taken into account. Blunted autonomic response, in particular HRM reactivity, was related with worse walking capacity, yielding r = 0.36 r = 0.29 (RRMS) and r > 0.5 (SPMS). A positive strong correlation r > 0.7 r > 0.65 between cardiorespiratory parameters derived at hospital and at home was also found.Conclusion: Autonomic function, as measured by HRV, differs according to MS phenotype. Autonomic response to walk tests may be useful for assessing clinical outcomes, mainly in the progressive stage of MS. Participants with larger changes in HRM are able to walk longer distance, while reduced ventilatory function during and after walk test performance is associated with higher fatigue and disability severity scores. Monitoring of disorder severity could also be feasible using ECG-derived cardiac and respiratory parameters recorded with a wearable device at home

    Biopsychosocial Response to the COVID-19 Lockdown in People with Major Depressive Disorder and Multiple Sclerosis

    Get PDF
    Changes in lifestyle, finances and work status during COVID-19 lockdownsmay have led to biopsychosocial changes in people with pre-existing vulnerabilities such as MajorDepressive Disorders (MDDs) and Multiple Sclerosis (MS). Methods: Data were collected as a part the RADAR-CNS (Remote Assessment of Disease and Relapse-Central Nervous System) program.We analyzed the following data from long-term participants in a decentralized multinational study:J. Clin. Med. 2022, 11, 7163. https://doi.org/10.3390/jcm11237163 https://www.mdpi.com/journal/jcm J. Clin. Med. 2022, 11, 7163 2 of 20 symptoms of depression, heart rate (HR) during the day and night; social activity; sedentary state,steps and physical activity of varying intensity. Linear mixed-effects regression analyses with repeated measures were fitted to assess the changes among three time periods (pre, during and post-lockdown) across the groups, adjusting for depression severity before the pandemic and gender. Results: Participants with MDDs (N = 255) and MS (N = 214) were included in the analyses. Overall,depressive symptoms remained stable across the three periods in both groups. A lower mean HR and HR variation were observed between pre and during lockdown during the day for MDDs and during the night for MS. HR variation during rest periods also decreased between pre- and post-lockdown in both clinical conditions. We observed a reduction in physical activity for MDDs and MS upon the introduction of lockdowns. The group with MDDs exhibited a net increase in social interaction via social network apps over the three periods. Conclusions: Behavioral responses to the lockdown measured by social activity, physical activity and HR may reflect changes in stress in people with MDDs and MS. Remote technology monitoring might promptly activate an early warning of physical and social alterations in these stressful situations. Future studies must explore how stress does or does not impact depression severit

    Biopsychosocial Response to the COVID-19 Lockdown in People with Major Depressive Disorder and Multiple Sclerosis

    Get PDF
    Background: Changes in lifestyle, finances and work status during COVID-19 lockdowns may have led to biopsychosocial changes in people with pre-existing vulnerabilities such as Major Depressive Disorders (MDDs) and Multiple Sclerosis (MS). Methods: Data were collected as a part of the RADAR-CNS (Remote Assessment of Disease and Relapse鈥擟entral Nervous System) program. We analyzed the following data from long-term participants in a decentralized multinational study: symptoms of depression, heart rate (HR) during the day and night; social activity; sedentary state, steps and physical activity of varying intensity. Linear mixed-effects regression analyses with repeated measures were fitted to assess the changes among three time periods (pre, during and post-lockdown) across the groups, adjusting for depression severity before the pandemic and gender. Results: Participants with MDDs (N = 255) and MS (N = 214) were included in the analyses. Overall, depressive symptoms remained stable across the three periods in both groups. A lower mean HR and HR variation were observed between pre and during lockdown during the day for MDDs and during the night for MS. HR variation during rest periods also decreased between pre- and post-lockdown in both clinical conditions. We observed a reduction in physical activity for MDDs and MS upon the introduction of lockdowns. The group with MDDs exhibited a net increase in social interaction via social network apps over the three periods. Conclusions: Behavioral responses to the lockdown measured by social activity, physical activity and HR may reflect changes in stress in people with MDDs and MS. Remote technology monitoring might promptly activate an early warning of physical and social alterations in these stressful situations. Future studies must explore how stress does or does not impact depression severity
    corecore