6,653 research outputs found

    NLO-QCD Corrections to Dilepton Production in the Randall-Sundrum Model

    Full text link
    The dilepton production process at hadron colliders in the Randall-Sundrum (RS) model is studied at next-to-leading order in QCD. The NLO-QCD corrections have been computed for the virtual graviton exchange process in the RS model, in addition to the usual gamma, Z-mediated processes of standard Drell-Yan. K-factors for the cross-sections at the LHC and Tevatron for differential in the invariant mass, Q, and the rapidity, Y, of the lepton pair are presented. We find the K-factors are large over substantial regions of the phase space.Comment: 24 pages, 12 figure

    Generation of Curvature Perturbations with Extra Anisotropic Stress

    Full text link
    We study the evolution of curvature perturbations and the cosmic microwave background (CMB) power spectrum in the presence of an hypothesized extra anisotropic stress which might arise, for example, from the dark radiation term in brane-world cosmology. We evolve the scalar modes of such perturbations before and after neutrino decoupling and analyze their effects on the CMB spectrum. A novel result of this work is that the cancellation of the neutrino and extra anisotropic stress could lead to a spectrum of residual curvature perturbations which is similar to the observed CMB power spectrum. This implies a possible additional consideration in the determination of cosmological parameters from the CMB analysis.Comment: 13 pages, 2 figures; improved discussio

    Data-Optimized Coronal Field Model: I. Proof of Concept

    Full text link
    Deriving the strength and direction of the three-dimensional (3D) magnetic field in the solar atmosphere is fundamental for understanding its dynamics. Volume information on the magnetic field mostly relies on coupling 3D reconstruction methods with photospheric and/or chromospheric surface vector magnetic fields. Infrared coronal polarimetry could provide additional information to better constrain magnetic field reconstructions. However, combining such data with reconstruction methods is challenging, e.g., because of the optical-thinness of the solar corona and the lack and limitations of stereoscopic polarimetry. To address these issues, we introduce the Data-Optimized Coronal Field Model (DOCFM) framework, a model-data fitting approach that combines a parametrized 3D generative model, e.g., a magnetic field extrapolation or a magnetohydrodynamic model, with forward modeling of coronal data. We test it with a parametrized flux rope insertion method and infrared coronal polarimetry where synthetic observations are created from a known "ground truth" physical state. We show that this framework allows us to accurately retrieve the ground truth 3D magnetic field of a set of force-free field solutions from the flux rope insertion method. In observational studies, the DOCFM will provide a means to force the solutions derived with different reconstruction methods to satisfy additional, common, coronal constraints. The DOCFM framework therefore opens new perspectives for the exploitation of coronal polarimetry in magnetic field reconstructions and for developing new techniques to more reliably infer the 3D magnetic fields that trigger solar flares and coronal mass ejections.Comment: 14 pages, 6 figures; Accepted for publication in Ap

    Revised Relativistic Hydrodynamical Model for Neutron-Star Binaries

    Full text link
    We report on numerical results from a revised hydrodynamic simulation of binary neutron-star orbits near merger. We find that the correction recently identified by Flanagan significantly reduces but does not eliminate the neutron-star compression effect. Although results of the revised simulations show that the compression is reduced for a given total orbital angular momentum, the inner most stable circular orbit moves to closer separation distances. At these closer orbits significant compression and even collapse is still possible prior to merger for a sufficiently soft EOS. The reduced compression in the corrected simulation is consistent with other recent studies of rigid irrotational binaries in quasiequilibrium in which the compression effect is observed to be small. Another significant effect of this correction is that the derived binary orbital frequencies are now in closer agreement with post-Newtonian expectations.Comment: Submitted to Phys. Rev.

    Direct Signals for Large Extra Dimensions in the Production of Fermion Pairs at Linear Colliders

    Get PDF
    We analyze the potentiality of the new generation of e+ee^+e^- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e. e+effˉGe^+e^- \leftarrow f\bar{f}G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using full tree level contibutions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96(0.86) up to 4.1(3.3) TeV at 2(5)σ\sigma level, depending on the number of extra dimensions.Comment: 19 pages, 5 figures. Using RevTex, axodraw.sty. Discussion was extended. No changes in the results. Accepted for publication by Phys. Rev.

    Di-jet production at the LHC through unparticles

    Full text link
    We report the phenomenological impact of unparticles in the production of di-jet at the LHC. We compute the scalar, spin-1 and spin-2 unparticle contributions to the dijet cross sections and present our results in different kinematical distributions. We find that the scalar unparticle contribution is dominant over that of the spin-1 and spin-2 unparticles for the same coupling values.Comment: 17 pages, 10 eps figures, 4 tables. Spin-1 unparticles also included. This version to appear in PR

    Semi-analytical Solution of Dirac equation in Schwarzschild Geometry

    Get PDF
    Separation of the Dirac equation in the spacetime around a Kerr black hole into radial and angular coordinates was done by Chandrasekhar in 1976. In the present paper, we solve the radial equations in a Schwarzschild geometry semi-analytically using Wentzel-Kramers-Brillouin approximation (in short WKB) method. Among other things, we present analytical expression of the instantaneous reflection and transmission coefficients and the radial wave functions of the Dirac particles. Complete physical parameter space was divided into two parts depending on the height of the potential well and energy of the incoming waves. We show the general solution for these two regions. We also solve the equations by a Quantum Mechanical approach, in which the potential is approximated by a series of steps and found that these two solutions agree. We compare solutions of different initial parameters and show how the properties of the scattered wave depend on these parameters.Comment: RevTex, 11 Latex pages and 12 Figures ; Classical and Quantum Gravity (in Press) (1999

    On Constraining Electroweak-Baryogenesis with Inhomogeneous Primordial Nucleosynthesis

    Get PDF
    Primordial nucleosynthesis calculations are shown to be able to provide constraints on electroweak baryogenesis which produce a highly inhomogeneous distribution of the baryon-to-photon ratio. Such baryogenesis scenarios overproduce 4He and/or 7Li and can be ruled out whenever a fraction f<3*10e-6(100 GeV/T)^3 of nucleated bubbles of broken-symmetry phase contributes > 10% of the baryon number within the horizon volume.Comment: 16 pages, 3 figures (figures available by email), UCRL-JC-11522

    Salvage with a mini-allograft after primary engraftment failure following autologous transplant for multiple myeloma

    Get PDF
    This article does not have an abstract

    Towards an evidence-based approach to fostering collaborative conversation in mainstream primary classrooms: Response to commentators

    Get PDF
    The ability to engage with ease in collaborative conversation is critical for child well-being and development. While key underpinning skills are biologically enabled, children require appropriate scaffolding and practice opportunities to develop proficient social conversational ability. Teaching conversation skills is a statutory requirement of the English primary (and many other) curricula. However, currently most upper primary mainstream teachers are not trained to teach conversation skills and do not teach them in the classroom or provide time for children to practice. We argue for first steps towards an evidence-based approach for a universal/Tier 1 programme, while fully acknowledging an ongoing need for Tier 2 and Tier 3 support as well as for further research into the strategies which are most effective in Tier 2/3 contexts. Further research is also needed to explore cultural variation in social conversation and to develop reliable, valid and brief teacher measures of child social conversational ability
    corecore