16 research outputs found
Impact of COVID-19 on non-COVID intensive care unit service utilization, case mix and outcomes: A registry-based analysis from India
Background: Coronavirus disease 2019 (COVID-19) has been responsible for over 3.4 million deaths globally and over 25 million cases in India. As part of the response, India imposed a nation-wide lockdown and prioritized COVID-19 care in hospitals and intensive care units (ICUs). Leveraging data from the Indian Registry of IntenSive care, we sought to understand the impact of the COVID-19 pandemic on critical care service utilization, case-mix, and clinical outcomes in non-COVID ICUs.
Methods: We included all consecutive patients admitted between 1st October 2019 and 27th September 2020. Data were extracted from the registry database and included patients admitted to the non-COVID or general ICUs at each of the sites. Outcomes included measures of resource-availability, utilisation, case-mix, acuity, and demand for ICU beds. We used a Mann-Whitney test to compare the pre-pandemic period (October 2019 - February 2020) to the pandemic period (March-September 2020). In addition, we also compared the period of intense lockdown (March-May 31st 2020) with the pre-pandemic period.
Results: There were 3424 patient encounters in the pre-pandemic period and 3524 encounters in the pandemic period. Comparing these periods, weekly admissions declined (median [Q1 Q3] 160 [145,168] to 113 [98.5,134]; p<0.001); unit turnover declined (median [Q1 Q3] 12.1 [11.32,13] to 8.58 [7.24,10], p<0.001), and APACHE II score increased (median [Q1 Q3] 19 [19,20] to 21 [20,22] ; p<0.001). Unadjusted ICU mortality increased (9.3% to 11.7%, p=0.015) and the length of ICU stay was similar (median [Q1 Q3] 2.11 [2, 2] vs. 2.24 [2, 3] days; p=0.151).
Conclusion: Our registry-based analysis of the impact of COVID-19 on non-COVID critical care demonstrates significant disruptions to healthcare utilization during the pandemic and an increase in the severity of illness
Impact of COVID-19 on non-COVID intensive care unit service utilization, case mix and outcomes: A registry-based analysis from India
Background: Coronavirus disease 2019 (COVID-19) has been responsible for over 3.4 million deaths globally and over 25 million cases in India. As part of the response, India imposed a nation-wide lockdown and prioritized COVID-19 care in hospitals and intensive care units (ICUs). Leveraging data from the Indian Registry of IntenSive care, we sought to understand the impact of the COVID-19 pandemic on critical care service utilization, case-mix, and clinical outcomes in non-COVID ICUs.
Methods: We included all consecutive patients admitted between 1st October 2019 and 27th September 2020. Data were extracted from the registry database and included patients admitted to the non-COVID or general ICUs at each of the sites. Outcomes included measures of resource-availability, utilisation, case-mix, acuity, and demand for ICU beds. We used a Mann-Whitney test to compare the pre-pandemic period (October 2019 - February 2020) to the pandemic period (March-September 2020). In addition, we also compared the period of intense lockdown (March-May 31st 2020) with the pre-pandemic period.
Results: There were 3424 patient encounters in the pre-pandemic period and 3524 encounters in the pandemic period. Comparing these periods, weekly admissions declined (median [Q1 Q3] 160 [145,168] to 113 [98.5,134]; p<0.001); unit turnover declined (median [Q1 Q3] 12.1 [11.32,13] to 8.58 [7.24,10], p<0.001), and APACHE II score increased (median [Q1 Q3] 19 [19,20] to 21 [20,22] ; p<0.001). Unadjusted ICU mortality increased (9.3% to 11.7%, p=0.015) and the length of ICU stay was similar (median [Q1 Q3] 2.11 [2, 2] vs. 2.24 [2, 3] days; p=0.151).
Conclusion: Our registry-based analysis of the impact of COVID-19 on non-COVID critical care demonstrates significant disruptions to healthcare utilization during the pandemic and an increase in the severity of illness
Implementing an intensive care registry in India: Preliminary results of the case-mix program and an opportunity for quality improvement and research
Background: The epidemiology of critical illness in India is distinct from high-income countries. However, limited data exist on resource availability, staffing patterns, case-mix and outcomes from critical illness. Critical care registries, by enabling a continual evaluation of service provision, epidemiology, resource availability and quality, can bridge these gaps in information. In January 2019, we established the Indian Registry of IntenSive care to map capacity and describe case-mix and outcomes. In this report, we describe the implementation process, preliminary results, opportunities for improvement, challenges and future directions. Methods: All adult and paediatric ICUs in India were eligible to join if they committed to entering data for ICU admissions. Data are collected by a designated representative through the electronic data collection platform of the registry. IRIS hosts data on a secure cloud-based server and access to the data is restricted to designated personnel and is protected with standard firewall and a valid secure socket layer (SSL) certificate. Each participating ICU owns and has access to its own data. All participating units have access to de-identified network-wide aggregate data which enables benchmarking and comparison. Results: The registry currently includes 14 adult and 1 paediatric ICU in the network (232 adult ICU beds and 9 paediatric ICU beds). There have been 8721 patient encounters with a mean age of 56.9 (SD 18.9); 61.4% of patients were male and admissions to participating ICUs were predominantly unplanned (87.5%). At admission, most patients (61.5%) received antibiotics, 17.3% needed vasopressors, and 23.7% were mechanically ventilated. Mortality for the entire cohort was 9%. Data availability for demographics, clinical parameters, and indicators of admission severity was greater than 95%. Conclusions: IRIS represents a successful model for the continual evaluation of critical illness epidemiology in India and provides a framework for the deployment of multi-centre quality improvement and context-relevant clinical research
Implementing an intensive care registry in India: preliminary results of the case-mix program and an opportunity for quality improvement and research
Background: The epidemiology of critical illness in India is distinct from high-income countries. However, limited data exist on resource availability, staffing patterns, case-mix and outcomes from critical illness. Critical care registries, by enabling a continual evaluation of service provision, epidemiology, resource availability and quality, can bridge these gaps in information. In January 2019, we established the Indian Registry of IntenSive care to map capacity and describe case-mix and outcomes. In this report, we describe the implementation process, preliminary results, opportunities for improvement, challenges and future directions.
Methods: All adult and paediatric ICUs in India were eligible to join if they committed to entering data for ICU admissions. Data are collected by a designated representative through the electronic data collection platform of the registry. IRIS hosts data on a secure cloud-based server and access to the data is restricted to designated personnel and is protected with standard firewall and a valid secure socket layer (SSL) certificate. Each participating ICU owns and has access to its own data. All participating units have access to de-identified network-wide aggregate data which enables benchmarking and comparison.
Results: The registry currently includes 14 adult and 1 paediatric ICU in the network (232 adult ICU beds and 9 paediatric ICU beds). There have been 8721 patient encounters with a mean age of 56.9 (SD 18.9); 61.4% of patients were male and admissions to participating ICUs were predominantly unplanned (87.5%). At admission, most patients (61.5%) received antibiotics, 17.3% needed vasopressors, and 23.7% were mechanically ventilated. Mortality for the entire cohort was 9%. Data availability for demographics, clinical parameters, and indicators of admission severity was greater than 95%.
Conclusions: IRIS represents a successful model for the continual evaluation of critical illness epidemiology in India and provides a framework for the deployment of multi-centre quality improvement and context-relevant clinical research
Characteristics and outcomes of COVID-19 patients admitted to hospital with and without respiratory symptoms
Background: COVID-19 is primarily known as a respiratory illness; however, many patients present to hospital without respiratory symptoms. The association between non-respiratory presentations of COVID-19 and outcomes remains unclear. We investigated risk factors and clinical outcomes in patients with no respiratory symptoms (NRS) and respiratory symptoms (RS) at hospital admission. Methods: This study describes clinical features, physiological parameters, and outcomes of hospitalised COVID-19 patients, stratified by the presence or absence of respiratory symptoms at hospital admission. RS patients had one or more of: cough, shortness of breath, sore throat, runny nose or wheezing; while NRS patients did not. Results: Of 178,640 patients in the study, 86.4 % presented with RS, while 13.6 % had NRS. NRS patients were older (median age: NRS: 74 vs RS: 65) and less likely to be admitted to the ICU (NRS: 36.7 % vs RS: 37.5 %). NRS patients had a higher crude in-hospital case-fatality ratio (NRS 41.1 % vs. RS 32.0 %), but a lower risk of death after adjusting for confounders (HR 0.88 [0.83-0.93]). Conclusion: Approximately one in seven COVID-19 patients presented at hospital admission without respiratory symptoms. These patients were older, had lower ICU admission rates, and had a lower risk of in-hospital mortality after adjusting for confounders
Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study
Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs).
Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support.
Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]).
Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable
Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study
Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14–1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25–1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable
Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study
International audienceBackground: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs).Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support.Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]).Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable
Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19
Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death