46 research outputs found

    Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections

    Get PDF
    The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggested approaches and corresponding rationales. In contrast to guidance in the previous document, published data on the optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches"based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 17 September 2021 and will be updated annually. The most current version of this document, including date of publication, is available at www.idsociety.org/practice-guideline/amr-guidance-2.0/

    Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa)

    Get PDF
    Background: Antimicrobial-resistant infections are commonly encountered in US hospitals and result in significant morbidity and mortality. This guidance document provides recommendations for the treatment of infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Methods: A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated common questions regarding the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Based on review of the published literature and clinical experience, the panel provide recommendations and associated rationale for each recommendation. Because of significant differences in the molecular epidemiology of resistance and the availability of specific anti-infective agents globally, this document focuses on treatment of antimicrobial-resistant infections in the United States. Results: Approaches to empiric treatment selection, duration of therapy, and other management considerations are briefly discussed. The majority of guidance focuses on preferred and alternative treatment recommendations for antimicrobial-resistant infections, assuming that the causative organism has been identified and antibiotic susceptibility testing results are known. Treatment recommendations apply to both adults and children. Conclusions: The field of antimicrobial resistance is dynamic and rapidly evolving, and the treatment of antimicrobial-resistant infections will continue to challenge clinicians. This guidance document is current as of 17 September 2020. Updates to this guidance document will occur periodically as new data emerge. Furthermore, the panel will expand recommendations to include other problematic gram-negative pathogens in future versions. The most current version of the guidance including the date of publication can be found at www.idsociety.org/practice-guideline/amr-guidance/

    Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa)

    Get PDF
    Background: The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. Methods: A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. Results: Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. Conclusions: The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/

    Clinical challenges treating Stenotrophomonas maltophilia infections: An update

    Get PDF
    Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections

    Mesophyll porosity is modulated by the presence of functional stomata

    Get PDF
    The formation of stomata and leaf mesophyll airspace must be coordinated to establish an efficient and robust network that facilitates gas exchange for photosynthesis, however the mechanism by which this coordinated development occurs remains unclear. Here, we combine microCT and gas exchange analyses with measures of stomatal size and patterning in a range of wild, domesticated and transgenic lines of wheat and Arabidopsis to show that mesophyll airspace formation is linked to stomatal function in both monocots and eudicots. Our results support the hypothesis that gas flux via stomatal pores influences the degree and spatial patterning of mesophyll airspace formation, and indicate that this relationship has been selected for during the evolution of modern wheat. We propose that the coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops, providing a target for future improvement

    Defining the scope for altering rice leaf anatomy to improve photosynthesis: a modelling approach

    Get PDF
    Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2. We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis
    corecore