120 research outputs found

    Methods to collect Anopheles mosquitoes and evaluate malaria transmission: A comparative study in two villages in Senegal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various methods have been studied as replacement of human landing catches (HLC) for mosquito sampling in entomological studies on malaria transmission. Conflicting results have been obtained in comparing relative efficiency of alternative methods, according to the area, the species present and their density. The aim of this study was to compare the number and characteristics of mosquitoes sampled in two areas of Senegal by three different methods: HLC, light traps adjacent to an occupied bed net (LT/N), pyrethrum spray catches (PSC).</p> <p>Methods</p> <p>Collections were performed in two villages: Dielmo (Soudan savanna) and Bandafassi (Soudan Guinean savanna), two or three nights per month for a 4-5 months period during the maximal transmission season in 2001-2002. Species were identified and <it>Plasmodium </it>infection determined by ELISA. The specific composition, circumsporozoite protein rate and entomological inoculation rate were calculated.</p> <p>Results</p> <p>The diversity of mosquito species captured was maximal with LT/N, minimal with PSC. The mean number of anopheles captures each night was significantly different according to the method used and the species. PSC displayed a significantly lower anopheles density. HLC was the most efficient sampling method when <it>Anopheles gambiae </it>was the main vector (in Bandafassi); LT/N when it was <it>Anopheles funestus </it>(in Dielmo). A significant correlation was found between HLC and LT/M but correlation parameters were different according to the species. Circumsporozoite protein rates were not significantly different between methods or species. The entomological inoculation rate varied along with vector density and thus with methods and species.</p> <p>Conclusions</p> <p>The choice of sampling method influenced entomological data recorded. Therefore, the sampling technique has to be chosen according to the vector studied and the aim of the study. Only HLC must be considered as the reference method, but in some conditions LT/N can be used as an alternative method.</p

    Comparative Evaluation of Light-Trap Catches, Electric Motor Mosquito Catches and Human Biting Catches of Anopheles in the Three Gorges Reservoir

    Get PDF
    The mosquito sampling efficiency of light-trap catches and electric motor mosquito catches were compared with that of human biting catches in the Three Gorges Reservoir. There was consistency in the sampling efficiency between light-trap catches and human biting catches for Anopheles sinensis (r = 0.82, P<0.01) and light-trap catches were 1.52 (1.35–1.71) times that of human biting catches regardless of mosquito density (r = 0.33, P>0.01), while the correlation between electric motor mosquito catches and human biting catches was found to be not statistically significant (r = 0.43, P>0.01) and its sampling efficiency was below that of human biting catches. It is concluded that light-traps can be used as an alternative to human biting catches of Anopheles sinensis in the study area and is a promising tool for sampling malaria vector populations

    A quantitative analysis of transmission efficiency versus intensity for malaria

    Get PDF
    The relationship between malaria transmission intensity and efficiency is important for malaria epidemiology, for the design of randomized control trials that measure transmission or incidence as end points, and for measuring and modelling malaria transmission and control. Five kinds of studies published over the past century were assembled and reanalysed to quantify malaria transmission efficiency and describe its relation to transmission intensity, to understand the causes of inefficient transmission and to identify functions suitable for modelling mosquito-borne disease transmission. In this study, we show that these studies trace a strongly nonlinear relationship between malaria transmission intensity and efficiency that is parsimoniously described by a model of heterogeneous biting. When many infectious bites are concentrated on a few people, infections and parasite population structure will be highly aggregated affecting the immunoepidemiology of malaria, the evolutionary ecology of parasite life history traits and the measurement and stratification of transmission for control using entomological and epidemiological data

    Prevalence, Causes and Socio-Economic Determinants of Vision Loss in Cape Town, South Africa

    Get PDF
    PURPOSE: To estimate the prevalence and causes of blindness and visual impairment in Cape Town, South Africa and to explore socio-economic and demographic predictors of vision loss in this setting. METHODS: A cross sectional population-based survey was conducted in Cape Town. Eighty-two clusters were selected using probability proportionate to size sampling. Within each cluster 35 or 40 people aged 50 years and above were selected using compact segment sampling. Visual acuity of participants was assessed and eyes with a visual acuity less than 6/18 were examined by an ophthalmologist to determine the cause of vision loss. Demographic data (age, gender and education) were collected and a socio-economic status (SES) index was created using principal components analysis. RESULTS: Out of 3100 eligible people, 2750 (89%) were examined. The sample prevalence of bilateral blindness (presenting visual acuity <3/60) was 1.4% (95% CI 0.9-1.8). Posterior segment diseases accounted for 65% of blindness and cataract was responsible for 27%. The prevalence of vision loss was highest among people over 80 years (odds ratio (OR) 6.9 95% CI 4.6-10.6), those in the poorest SES group (OR 3.9 95% CI 2.2-6.7) and people with no formal education (OR 5.4 95% CI 1.7-16.6). Cataract surgical coverage was 68% in the poorest SES tertile (68%) compared to 93% in the medium and 100% in the highest tertile. CONCLUSIONS: The prevalence of blindness among people ≄50 years in Cape Town was lower than expected and the contribution of posterior segment diseases higher than previously reported in South Africa and Sub Saharan Africa. There were clear socio-economic disparities in prevalence of vision loss and cataract surgical coverage in this setting which need to be addressed in blindness prevention programs

    Plant use of the Maasai of Sekenani Valley, Maasai Mara, Kenya

    Get PDF
    Traditional plant use is of tremendous importance in many societies, including most rural African communities. This knowledge is however, rapidly dwindling due to changes towards a more Western lifestyle, and the influence of modern tourism. In case of the Sekenani Maasai, the recent change from a nomadic to a more sedentary lifestyle has not, thus far lead to a dramatic loss of traditional plant knowledge, when compared to other Maasai communities. However, in Sekenani, plants are used much less frequently for manufacturing tools, and for veterinary purposes, than in more remote areas. While the knowledge is still present, overgrazing and over-exploitation of plant resources have already led to a decline of the plant material available. This paper examines the plant use of the Maasai in the Sekenani Valley, North of the Masaai Mara National Reserve. The Maasai pastoralists of Kenya and Tanzania use a large part of the plants in their environment for many uses in daily life. The plant use and knowledge of the Sekenani Maasai is of particular interest, as their clan, the "Il-Purko", was moved from Central Kenya to this region by the British Colonial Administration in 1904. The results of this study indicate that despite their relocation 100 years ago, the local population has an extensive knowledge of the plants in their surroundings, and they ascribe uses to a large percentage of the plants found. One-hundred-fifty-five plant species were collected, identified and their Maa names and traditional uses recorded. Although fifty-one species were reported as of "no use", only eighteen of these had no Maasai name. Thirty-three were recognized by a distinctive Maa name. Thirty-nine species had a medicinal use, and 30 species served as fodder for livestock. Six species could not be identified. Of these plants five were addressed by the Maasai with distinct names. This exemplifies the Sekenani Maasai's in-depth knowledge of the plant resources. Traditionally, the Maasai attribute most illnesses to the effect of pollutants that block or inhibit digestion. These pollutants can include "polluted" food, contact with sick people and witchcraft. In most cases the treatment of illness involves herbal purgatives to cleanse the patient. There are alsofrequent indications of plant use for common problems like wounds, parasites, body aches and burns

    Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Anopheles gambiae </it>and <it>Anopheles funestus </it>mosquito species complexes are the primary vectors of <it>Plasmodium falciparum </it>malaria in sub-Saharan Africa. To better understand the environmental factors influencing these species, the abundance, distribution and transmission data from a south-eastern Kenyan study were retrospectively analysed, and the climate, vegetation and elevation data in key locations compared.</p> <p>Methods</p> <p>Thirty villages in Malindi, Kilifi and Kwale Districts with data on <it>An. gambiae sensu strict</it>, <it>Anopheles arabiensis</it> and <it>An. funestus</it> entomological inoculation rates (EIRs), were used as focal points for spatial and environmental analyses. Transmission patterns were examined for spatial autocorrelation using the Moran's <it>I </it>statistic, and for the clustering of high or low EIR values using the Getis-Ord Gi* statistic. Environmental data were derived from remote-sensed satellite sources of precipitation, temperature, specific humidity, Normalized Difference Vegetation Index (NDVI), and elevation. The relationship between transmission and environmental measures was examined using bivariate correlations, and by comparing environmental means between locations of high and low clustering using the Mann-Whitney <it>U </it>test.</p> <p>Results</p> <p>Spatial analyses indicated positive autocorrelation of <it>An. arabiensis </it>and <it>An. funestus </it>transmission, but not of <it>An. gambiae s.s</it>., which was found to be widespread across the study region. The spatial clustering of high EIR values for <it>An. arabiensis </it>was confined to the lowland areas of Malindi, and for <it>An. funestus </it>to the southern districts of Kilifi and Kwale. Overall, <it>An. gambiae s.s</it>. and <it>An. arabiensis </it>had similar spatial and environmental trends, with higher transmission associated with higher precipitation, but lower temperature, humidity and NDVI measures than those locations with lower transmission by these species and/or in locations where transmission by <it>An. funestus </it>was high. Statistical comparisons indicated that precipitation and temperatures were significantly different between the <it>An. arabiensis </it>and <it>An. funestus </it>high and low transmission locations.</p> <p>Conclusion</p> <p>These finding suggest that the abundance, distribution and malaria transmission of different malaria vectors are driven by different environmental factors. A better understanding of the specific ecological parameters of each malaria mosquito species will help define their current distributions, and how they may currently and prospectively be affected by climate change, interventions and other factors.</p

    Seeing is believing: the nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby

    Get PDF
    Background: The immediate aim of our study was to analyse the behaviour of the malarial mosquito Anopheles coluzzii (An. gambiae species complex) near a human host with the ultimate aim of contributing to our fundamental understanding of mosquito host-seeking behaviour and the overall aim of identifying behaviours that could be exploited to enhance sampling and control strategies. Results: Based on 3D video recordings of individual host-seeking females in a laboratory wind-tunnel, we found that despite being a nocturnal species, An. coluzzii is highly responsive to a visually conspicuous object, but only in the presence of host-odour. Female mosquitoes approached and abruptly veered away from a dark object, which suggests attraction to visual cues plays a role in bringing mosquitoes to the source of host odour. It is worth noting that the majority of our recorded flight tracks consisted of highly stereotyped ‘dipping’ sequences near the ground, which have been mentioned in the literature, but never before quantified. Conclusions: Our quantitative analysis of female mosquito flight patterns within ~1.5 m of a host has revealed highly relevant information about responsiveness to visual objects and flight height that could revolutionise the efficacy of sampling traps; the capturing device of a trap should be visually conspicuous and positioned near the ground where the density of host-seeking mosquitoes would be greatest. These characteristics are not universally present in current traps for malarial mosquitoes. The characterisation of a new type of flight pattern that is prevalent in mosquitoes suggests that there is still much that is not fully understood about mosquito flight behaviour

    Exploiting Anopheles responses to thermal, odour and visual stimuli to improve surveillance and control of malaria

    Get PDF
    Mosquito surveillance and control are at the heart of efforts to eliminate malaria, however, there remain significant gaps in our understanding of mosquito behaviour that impede innovation. We hypothesised that a combination of human-associated stimuli could be used to attract and kill malaria vectors more successfully than individual stimuli, and at least as well as a real human. To test this in the field, we quantified Anopheles responses to olfactory, visual and thermal stimuli in Burkina Faso using a simple adhesive trap. Traps baited with human odour plus high contrast visual stimuli caught more Anopheles than traps with odour alone, showing that despite their nocturnal habit, malaria vectors make use of visual cues in host-seeking. The best performing traps, however, combined odour and visual stimuli with a thermal signature in the range equivalent to human body temperature. When tested against a human landing catch during peak mosquito abundance, this “host decoy” trap caught nearly ten times the number of Anopheles mosquitoes caught by a human collector. Exploiting the behavioural responses of mosquitoes to the entire suite of host stimuli promises to revolutionise vector surveillance and provide new paradigms in disease control

    An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns.

    Get PDF
    ABSTRACT: BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153USversus187US versus 187US per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly

    A resting box for outdoor sampling of adult Anopheles arabiensis in rice irrigation schemes of lower Moshi, northern Tanzania

    Get PDF
    Malaria vector sampling is the best method for understanding the vector dynamics and infectivity; thus, disease transmission seasonality can be established. There is a need to protecting humans involved in the sampling of disease vectors during surveillance or in control programmes. In this study, human landing catch, two cow odour baited resting boxes and an unbaited resting box were evaluated as vector sampling tools in an area with a high proportion of Anopheles arabiensis, as the major malaria vector. Three resting boxes were evaluated against human landing catch. Two were baited with cow odour, while the third was unbaited. The inner parts of the boxes were covered with black cloth materials. Experiments were arranged in latin-square design. Boxes were set in the evening and left undisturbed; mosquitoes were collected at 06:00 am the next morning, while human landing catch was done overnight. A total of 9,558 An. arabiensis mosquitoes were collected. 17.5% (N = 1668) were collected in resting box baited with cow body odour, 42.5% (N = 4060) in resting box baited with cow urine, 15.1% (N = 1444) in unbaited resting box and 24.9% (N = 2386) were collected by human landing catch technique. In analysis, the house positions had no effect on the density of mosquitoes caught (DF = 3, F = 0.753, P = 0.387); the sampling technique had significant impact on the caught mosquitoes densities (DF = 3, F 37. 944, P < 0.001). Odour-baited resting boxes have shown the possibility of replacing the existing traditional method (human landing catch) for sampling malaria vectors in areas with a high proportion of An. arabiensis as malaria vectors. Further evaluations of fermented urine and longevity of the urine odour still need to be investigated
    • 

    corecore