21 research outputs found

    Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    Get PDF
    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms.Peer ReviewedPostprint (author’s final draft

    Human exposure to motion during maintenance on floating offshore wind turbines

    Get PDF
    Working on floating offshore wind turbines is a complex operation. An important factor is the influence that the structural motion has on humans located on the asset in a harsh environment during maintenance activities and its implications towards personal safety, human comfort and the ability to work. For the research presented in this paper, extensive simulation studies were conducted to assess if and to what extend working on floating offshore wind turbines may be compromised due to extensive structural motion. Results show that weather windows for maintenance activities are reduced by up to 5% when adhering to guidelines suggesting limiting threshold values for acceleration exposure. The corresponding potential financial losses materializing due to longer turbine unavailability after a fault are significant. All the presented and discussed results underline the importance of considering motion criteria in the design phase of a new project - a factor which is not included in design procedures today

    Integrated optimization of floating wind turbine systems

    Get PDF
    An exemplary methodology is shown for the integrated conceptioning of a floating wind turbine system with focus on the spar-type hull and the wind turbine blade-pitch-to-feather controller. It is a special interest to use a standard controller, which is easily implementable, even at early design stages. The optimization of the system is done with adapted static and dynamic models through a stepwise narrowing of the design space according to the requirements of floating wind turbines. After selecting three spar-type hull geometries with variable draft a simplified nonlinear simulation model with four degrees of freedom is set up and then linearized including the aerodynamics with the blade pitch controller in the closed-loop. The linear system allows conventional procedures for SISO controller design giving a theoretically suitable range of controller gains. Subsequently, the nonlinear model is used to find the optimal controller gains for each platform. Finally, a nonlinear coupled model with nine degrees of freedom gives the optimal solution under realistic wind and wave loads

    Simulation of rotor-foundation-interaction on tidal current turbines with computational fluid dynamics

    Get PDF
    In this research the interaction of the rotor hydrodynamics with the foundation of a Tidal Energy Converter (TEC) are investigated. A detailed model of the turbine is built up and simulated with Computational Fluid Dynamics (CFD). The results of these simulations are used to compare the 4 load states of up- and downstream, below and above rated operation with respect to the rotor performance coefficients. The paper concludes with a comparison to results of simplified models and shows that the interaction can be simulated by an empirical approach

    Reduced nonlinear model of a spar-mounted floating wind turbine

    Get PDF
    Floating offshore wind turbines (FOWTs) are complex dynamic systems requiring a thorough design for optimal operating performance and stability. Advanced control strategies, like model predictive control, are part of the integrated development of new concepts. This paper presents a simplified and computationally efficient model of the spar-mounted OC3-Hywind FOWT. Applications are, e.g., the real-time integration within the controller or an assessment during conceptual design, possibly within an optimization algorithm. Symbolic equations of motion of a multibody system are available as a set of ordinary differential equations. Aerodynamic forces are computed based on a rotor effective wind speed at hub height using data tables for thrust and torque coefficients. Hydrodynamic impacts on the floating body are modeled in a way that only the wave height serves as the disturbance signal. This estimation is based on potential flow theory and Morison’s formula for slender cylinders. The reduced model code is fully compiled and has a real-time factor of approximately 100. Various simulations of common load cases with a comparison to the certified FAST code have shown to be promising

    Nonlinear model predictive control of floating wind turbines with individual pitch control

    Get PDF
    In this work a nonlinear model predictive controller with individual pitch control for a floating offshore wind turbine is presented. An aerodynamic model of the collective pitch control approach is extended by describing pitching and yawing moments based on rotor disk theory. This extension is implemented in a reduced nonlinear model of the floating wind turbine including disturbance preview of wind speed, linear vertical and horizontal wind shear, and wave height to compute optimal input trajectories for the individual pitch control inputs and the generator torque. An extended cost functional for individual pitch control is proposed based on the collective pitch control approach. The controller is evaluated in aero-servo-hydro-elastic simulations of a 5MW reference wind turbine disturbed by a three-dimensional stochastic turbulent wind field. Results show a significant blade fatigue load reduction compared to a baseline controller through minimizing yawing and pitching moments on the rotor hub while maintaining the advantages of the model predictive control approach with collective pitch control

    Validation of INNWIND.EU scaled model tests of a semisubmersible floating wind turbine

    Get PDF
    The subject of this study is the verification and the validation of existing numerical codes for floating offshore wind turbine structures using wave tank model tests as part of the INNWIND.EU project. A model of the OC4-DeepCwind semisubmersible platform, together with a Froude scaled rotor model with low-Reynolds airfoils is tested in a combined wind-and-wave basin. The simulation environment comprises the multibody software SIMPACK with the HydroDyn module for the hydrodynamic loads, MAP++ for the mooring line forces and AeroDyn for the aerodynamic loads. The focus of this paper is the validation of the hydrodynamics of a modified model hull shape, which compensates for the excess mass of the nacelle. Furthermore also first steady wind simulations without wave excitation have been carried out. The results show that the model is validated and gives the basis for further research based on the conducted experiments

    Comparative levelized cost of energy analysis

    Get PDF
    To estimate the economic feasibility of floating and bottom-fixed substructures at various offshore sites, a generally applicable calculation tool has been developed. With this “LCOE calculation tool” it is possible to optimize the design and reduce the costs of deep offshore wind farms, by analyzing key aspects already during the planning and pre-design phase. Hereby the conducted breakdown of the several cost categories assists identifying main cost-drivers prior a final investment decision. Whereas the influence of varying site specific, technological and financial parameters on the cost-effectiveness is investigated in a sensitivity analysis. To validate and enlarge the tool’s dataset, the tool was applied to a real floating concept with the aim to compare the cost-effectiveness of floating solutions with their bottom-fixed counterparts.Peer ReviewedPostprint (published version

    Offshore turbines with bottom-fixed or floating substructures

    No full text
    Wind turbines have been applied offshore since 1991, when the first offshore wind farm in Vindeby, Denmark was commissioned. According to GEWEC, by the end of 2018, about 23,140 MW of cumulative offshore wind capacity has been installed, with the majority installed in the United Kingdom (7.96 GW), Germany (6.38 GW), and China (4.59 GW). Recent auctions in Europe with subsidy-free winning bids mean that offshore wind can be produced economically at a market price, making offshore wind one of the most economic sources of renewable energy, and it is expected that the capacity will grow to 100-120 GW by 2030
    corecore