5 research outputs found

    Hydrophilic molecularly imprinted phenol-amine-formaldehyde resins

    Get PDF
    Hydrophilic molecularly imprinted resins (MIR), which are produced using hydrophilic monomers such as phenols, aldehydes, melamine or urea, have recently attracted increasing attention for use in separation and preconcentration. Among their obvious advantages are good sorption capacity, high recovery and selectivity, as well as their reusability in aqueous solutions. In this work we applied the bulk molecular imprinting method to produce quercetin-imprinted phenol-amino-formaldehyde resin. For this purpose, phloroglucinol and melamine solutions were mixed with formaldehyde and then polyethylene glycol and quercetin (Qu) were added to the obtained solution as a porogen and a template, respectively. The mixture was stirred under heating, then left in the thermostat for a continuous time. The optimum ratio of phloroglucinol to melamine was 3:1. The average molecular mass of porogen (Mw) varied between 4000–10000 Da. The obtained MIR were eluted with ethanol-water mixture (4:1, v/v) in the Soxhlet extractor for 36 h to remove the template. The MIR were characterized by FTIR-spectroscopy, laser diffraction spectroscopy and differential thermal analysis. The maximum recovery and sorption capacity of MIR synthesized in the presence of a porogen with Mw 10000 were 47% and 4.7 μmol Qu/g, respectively. The maximum imprinting factor was 1.41. The sorption kinetics of quercetin by a non-imprinted resin (NIR) is best described by a pseudo-second-order model, while MIR has a mixed pseudo-first-second-order mechanism

    Mechanochemical synthesis of carbon-based nanocomposites for supercapacitors

    Get PDF
    New nanoporous carbon-SiO2 composite materials were synthesized from organic raw materials (rice shells) and their electrochemical properties were investigated by cyclic voltammetry in liquid electrolytes (6 M KOH or 1 M H2SO4). A correlation between specific capacitance and specific surface area was observed. Due to high specific capacitance of 90 F/g the carbon materials under study may be regarded as promising electrode materials for electrochemical supercapacitors

    Influence of anionic surfactant on stability of nanoparticles in aqueous solutions

    Get PDF
    Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe and effective application of nanoparticles, for instance, in the oil industry. As conventional oil reserves are depleted, it is necessary to advance chemical enhanced oil recovery (cEOR) techniques to develop unconventional oil reservoirs. Nanoparticles modified by surfactants can be a promising reagent in cEOR. These nanomaterials can reduce interfacial tension and change the wettability of reservoir rock, which leads to an increase in oil recovery. However, the application of nanoparticles is limited by their substantial aggregation in aqueous solutions. The purpose of this work is to select nanoparticles for obtaining stable sols in water in the presence of an anionic surfactant and to optimize the conditions (pH) for further modifying the nanoparticles with the anionic surfactant. Sodium dodecyl sulfate (SDS) is used as an anionic surfactant. The aggregation of oxide and carbon nanoparticles in water and anionic surfactant solutions was studied by laser diffraction, dynamic and electrophoretic light scattering methods. Most of the studied nanoparticles in water form aggregates with bi-, three- and polymodal particle size distributions. TiO2 nanoparticles obtained by plasma dynamic synthesis form the most stable sols in anionic surfactant solutions. The range of 5–7 pH is defined as optimal for their modification with surfactants. The stability of carbon nanoparticles in aqueous solutions increases significantly in the presence of a surfactant. The obtained results form the basis for further research on the modification of marked nanoparticles in surfactant solutions

    Mechanochemical synthesis of carbon-based nanocomposites for supercapacitors

    No full text
    New nanoporous carbon-SiO2 composite materials were synthesized from organic raw materials (rice shells) and their electrochemical properties were investigated by cyclic voltammetry in liquid electrolytes (6 M KOH or 1 M H2SO4). A correlation between specific capacitance and specific surface area was observed. Due to high specific capacitance of 90 F/g the carbon materials under study may be regarded as promising electrode materials for electrochemical supercapacitors
    corecore