28 research outputs found

    Combined anticancer therapy with imidazoacridinone analogue C-1305 and paclitaxel in human lung and colon cancer xenografts : modulation of tumour angiogenesis

    Get PDF
    The acridanone derivative 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone (C-1305) has been described as a potent inhibitor of cancer cell growth. Its mechanism of action in in vitro conditions was attributed, among others, to its ability to bind and stabilize the microtubule network and subsequently exhibit its tumour-suppressive effects in synergy with paclitaxel (PTX). Therefore, the objective of the present study was to analyse the effects of the combined treatment of C-1305 and PTX in vivo. In addition, considering the results of previous genomic analyses, particular attention was given to the effects of this treatment on tumour angiogenesis. Treatment with C-1305 revealed antitumor effect in A549 lung cancer cells, and combined treatment with PTX showed tendency to anticancer activity in HCT116 colon cancer xenografts. It also improved tumour blood perfusion in both tumour models. The plasma level of CCL2 was increased and that of PDGF was decreased after combined treatment with C-1305 and PTX. The experimental results showed that the levels of FGF1, TGF-beta and Ang-4 decreased, whereas the levels of ERK1/2 and Akt phosphorylation increased in HCT116 tumour tissue following combined treatment with both drugs. The results of in vitro capillary-like structure formation assay demonstrated the inhibiting effect of C-1305 on this process. Although previous in vitro and in vivo studies suggested a positive effect of C-1305 on cancer cells, combined treatment of HCT116 human colon and A549 lung cancer cells with both PTX and C-1305 in vivo showed that the antitumor activity was restricted and associated with the modulation of tumour angiogenesis

    One-Pot Phosphonylation of Heteroaromatic Lithium Reagents: The Scope and Limitations of Its Use for the Synthesis of Heteroaromatic Phosphonates

    No full text
    A one-pot lithiation–phosphonylation procedure was elaborated as a method to prepare heteroaromatic phosphonic acids. It relied on the direct lithiation of heteroaromatics followed by phosphonylation with diethyl chlorophosphite and then oxidation with hydrogen peroxide. This protocol provided the desired phosphonates with satisfactory yields. This procedure also had some limitations in its dependence on the accessibility and stability of the lithiated heterocyclic compounds. The same procedure could be applied to phosphonylation of aromatic compounds, which do not undergo direct lithiation and thus require the use of their bromides as substrates. The obtained compounds showed weak antiproliferative activity when tested on three cancer cell lines

    Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies

    No full text
    Among the various substances that interfere with the microtubule formation process, isothiocyanates (ITCs) are the group of compounds for which the binding mode and mechanism of action have not yet been explained. To better understand the structure–activity relationship of tubulin-isothiocyanate interactions, we designed and synthesized a series of sixteen known and novel, structurally diverse ITCs, including amino acid ester-derived isothiocyanates, bis-isothiocyanates, analogs of benzyl isothiocyanate, and phosphorus analogs of sulforaphane. All synthesized compounds and selected natural isothiocyanates (BITC, PEITC, AITC, and SFN) were tested in vitro to evaluate their antiproliferative activity, tubulin polymerization inhibition potential, and influence on cell cycle progression. The antiproliferative activity of most of the newly tested compounds exceeded the action of natural isothiocyanates, with four structures being more potent as tubulin polymerization inhibitors than BITC. As a confirmation of anti-tubulin activity, the correlation between polymerization inhibition and cell cycle arrest in the G2/M phase was observed for the most active compounds. In light of the biological results indicating significant differences in the impact of structurally diverse isothiocyanate on tubulin polymerization, in silico analysis was conducted to analyze the possible mode of isothiocyanate-tubulin binding and to show how it can influence the polymerization reaction

    Biaryl Sulfonamides Based on the 2-Azabicycloalkane Skeleton—Synthesis and Antiproliferative Activity

    No full text
    In a search for new, selective antitumor agents, we prepared a series of sulfonamides built on bicyclic scaffolds of 2-azabicyclo(2.2.1)heptane and 2-azabicyclo(3.2.1)octane. To this end, aza-Diels–Alder cycloadducts were converted into amines bearing 2-azanorbornane or a bridged azepane skeleton; their treatment with sulfonyl chlorides containing biaryl moieties led to the title compounds. The study of antiproliferative activity of the new agents showed that some of them inhibited the growth of chosen cell lines with the IC50 values comparable with cisplatin, and some derivatives were found considerably less toxic for nonmalignant cells

    Three-Component Reaction of Diamines with Triethyl Orthoformate and Diethyl Phosphite and Anti-Proliferative and Antiosteoporotic Activities of the Products

    No full text
    A three-component reaction between diamines (diaminobenzenes, diaminocyclohexanes, and piperazines), triethyl orthoformate, and diethyl phosphite was studied in some detail. In the case of 1,3- and 1,4-diamines and piperazines, products of the substitution of two amino moieties—the corresponding tetraphosphonic acids—were obtained. In the cases of 1,2-diaminobenzene, 1,2-diaminocyclohexanes and 1,2-diaminocyclohexenes, only one amino group reacted. This is most likely the result of the formation of hydrogen bonding between the phosphonate oxygen and a hydrogen of the adjacent amino group, which caused a decrease in the reactivity of the amino group. Most of the obtained compounds inhibited the proliferation of RAW 264.7 macrophages, PC-3 human prostate cancer cells, and MCF-7 human breast cancer cells, with 1, trans-7, and 16 showing broad nonspecific activity, which makes these compounds especially interesting in the context of anti-osteolytic treatment and the blocking of interactions and mutual activation of osteoclasts and tumor metastatic cells. These compounds exhibit similar activity to zoledronic acid and higher activity than incadronic acid, which were used as controls. However, studies of sheep with induced osteoporosis carried out with compound trans-7 did not support this assumption

    Dipeptides of <i>S</i>-Substituted Dehydrocysteine as Artzyme Building Blocks: Synthesis, Complexing Abilities and Antiproliferative Properties

    No full text
    Background: Dehydropeptides are analogs of peptides containing at least one conjugate double bond between α,β-carbon atoms. Its presence provides unique structural properties and reaction centre for chemical modification. In this study, the series of new class of dipeptides containing S-substituted dehydrocysteine with variety of heterocyclic moieties was prepared. The compounds were designed as the building blocks for the construction of artificial metalloenzymes (artzymes). Therefore, the complexing properties of representative compounds were also evaluated. Furthermore, the acknowledged biological activity of natural dehydropeptides was the reason to extend the study for antiproliferative action of against several cancer cell lines. Methods: The synthetic strategy involves glycyl and phenylalanyl-(Z)-β-bromodehydroalanine as a substrate in one pot addition/elimination reaction of thiols. After deprotection of N-terminal amino group the compounds with triazole ring were tested as complexones for copper(II) ions using potentiometric titration and spectroscopic techniques (UV-Vis, CD, EPR). Finally, the antiproliferative activity was evaluated by sulforhodamine B assay. Results and Conclusions: A simple and efficient procedure for preparation of dipeptides containing S-substituded dehydrocysteine was provided. The peptides containing triazole appeared to be strong complexones of copper(II) ions. Some of the peptides exhibited promising antiproliferative activities against number of cancer cell lines, including cell lines resistant to widely used anticancer agent

    (S)-2-(4-Chlorobenzoyl)-1,2,3,4-tetrahydrobenzo[e]pyrazino[1,2-a][1,4]diazepine-6,12(11H,12aH)-dione—Synthesis and Crystallographic Studies

    Get PDF
    (S)-2-(4-Chlorobenzoyl)-1,2,3,4-tetrahydrobenzo[e]pyrazino[1,2-a][1,4]diazepine-6,12(11H,12aH)-dione was obtained in a three-step, one-pot synthesis, starting from optically pure (S)-2-piperazine carboxylic acid dihydrochloride. Selective acylation of the β-nitrogen atom followed by condensation with isatoic anhydride and cyclization with HATU/DIPEA to a seven-member benzodiazepine ring, led to the tricyclic benzodiazepine derivative. Crystallographic studies and initial biological screening were performed for the title compound

    Vitamin D Compounds PRI-2191 and PRI-2205 Enhance Anastrozole Activity in Human Breast Cancer Models

    No full text
    1,25-Dihydroxycholecalciferol, the hormonally active vitamin D3 metabolite, is known to exhibit therapeutic effects against breast cancer, mainly by lowering the expression of estrogen receptors and aromatase activity. Previously, the safety of the vitamin D active metabolite (24R)-1,24-dihydroxycholecalciferol (PRI-2191) and 1,25(OH)2D3 analog PRI-2205 was tested, and the in vitro activity of these analogs against different cancer cell lines was studied. We determined the effect of the two vitamin D compounds on anastrozole (An) activity against breast cancer based on antiproliferative activity, ELISA, flow cytometry, enzyme inhibition potency, PCR, and xenograft study. Both the vitamin D active metabolite and synthetic analog regulated the growth of not only estrogen receptor-positive cells (T47D and MCF-7, in vitro and in vivo), but also hormone-independent cancer cells such as SKBR-3 (HER-2-positive) and MDA-MB-231 (triple-negative), despite their relatively low VDR expression. Combined with An, PRI-2191 and PRI-2205 significantly inhibited the tumor growth of MCF-7 cells. Potentiation of the antitumor activity in combined treatment of MCF-7 tumor-bearing mice is related to the reduced activity of aromatase by both An (enzyme inhibition) and vitamin D compounds (switched off/decreased aromatase gene expression, decreased expression of other genes related to estrogen signaling) and by regulation of the expression of the estrogen receptor ERα and VDR

    Novel (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6,12(2H,11H)-dione derivatives: Selective inhibition of MV-4-11 biphenotypic B myelomonocytic leukemia cells’ growth is accompanied by reactive oxygen species overproduction and apoptosis

    No full text
    A series of optically pure (R)- and (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6,12(2H,11H)-dione derivatives was designed and synthesized as novel anthramycin analogues in a three-step, one-pot procedure, and tested for their antiproliferative activity on nine following cell lines: MV-4-11, UMUC-3, MDA-MB-231, MCF7, LoVo, HT-29, A-549, A2780 and BALB/3T3. The key structural features responsible for exhibition of cytotoxic effect were determined: the (S)-configuration of chiral center and the presence of hydrophobic 4-biphenyl substituent in the side chain. Introduction of bromine atom into the 8 position (8g) or substitution of dilactam ring with benzyl group (8m) further improved the activity and selectivity of investigated compounds. Among others, compound 8g exhibited selective cytotoxic effect against MV-4-11 (IC50 = 8.7 μM) and HT-29 (IC50 = 17.8 μM) cell lines, while 8m showed noticeable anticancer activity against MV-4-11 (IC50 = 10.8 μM) and LoVo (IC50 = 11.0 μM) cell lines. The cell cycle arrest in G1/S checkpoint and apoptosis associated with overproduction of reactive oxygen species was also observed for 8e and 8m
    corecore