6,501 research outputs found

    Oblivious transfer based on single-qubit rotations

    Full text link
    We present a bit-string quantum oblivious transfer protocol based on single-qubit rotations. Our protocol is built upon a previously proposed quantum public-key protocol and its practical security relies on the laws of Quantum Mechanics. Practical security is reflected in the fact that, due to technological limitations, the receiver (Bob) of the transferred bit-string is restricted to performing only "few-qubit" coherent measurements. We also present a single-bit oblivious transfer based on the proposed bit-string protocol. The protocol can be implemented with current technology based on optics

    Data-Space Inversion with Ensemble Smoother

    Full text link
    Reservoir engineers use large-scale numerical models to predict the production performance in oil and gas fields. However, these models are constructed based on scarce and often inaccurate data, making their predictions highly uncertain. On the other hand, measurements of pressure and flow rates are constantly collected during the operation of the field. The assimilation of these data into the reservoir models (history matching) helps to mitigate uncertainty and improve their predictive capacity. History matching is a nonlinear inverse problem, which is typically handled using optimization and Monte Carlo methods. In practice, however, generating a set of properly history-matched models that preserve the geological realism is very challenging, especially in cases with complicated prior description, such as models with fractures and complex facies distributions. Recently, a new data-space inversion (DSI) approach was introduced in the literature as an alternative to the model-space inversion used in history matching. The essential idea is to update directly the predictions from a prior ensemble of models to account for the observed production history without updating the corresponding models. The present paper introduces a DSI implementation based on the use of an iterative ensemble smoother and demonstrates with examples that the new implementation is computationally faster and more robust than the earlier method based on principal component analysis. The new DSI is also applied to estimate the production forecast in a real field with long production history and a large number of wells. For this field problem, the new DSI obtained forecasts comparable with a more traditional ensemble-based history matching.Comment: 33 pages, 14 figure

    A comprehensive classification of galaxies in the SDSS: How to tell true from fake AGN?

    Full text link
    We use the W_Ha versus [NII]/Ha (WHAN) diagram to provide a comprehensive emission-line classification of SDSS galaxies. This classification is able to cope with the large population of weak line galaxies that do not appear in traditional diagrams due to a lack of some of the diagnostic lines. A further advantage of the WHAN diagram is to allow the differentiation between two very distinct classes that overlap in the LINER region of traditional diagnostic diagrams. These are galaxies hosting a weakly active nucleus (wAGN) and "retired galaxies" (RGs), i.e. galaxies that have stopped forming stars and are ionized by their hot evolved low-mass stars. A useful criterion to distinguish true from fake AGN (i.e. the RGs) is the ratio (\xi) of the extinction-corrected L_Ha with respect to the Ha luminosity expected from photoionization by stellar populations older than 100 Myr. This ratio follows a markedly bimodal distribution, with a \xi >> 1 population composed by systems undergoing star-formation and/or nuclear activity, and a peak at \xi ~ 1 corresponding to the prediction of the RG model. We base our classification scheme on the equivalent width of Ha, an excellent observational proxy for \xi. Based on the bimodal distribution of W_Ha, we set the division between wAGN and RGs at W_Ha = 3 A. Five classes of galaxies are identified within the WHAN diagram: (a) Pure star forming galaxies: log [NII]/Ha 3 A. (b) Strong AGN (i.e., Seyferts): log [NII]/Ha > -0.4 and W_Ha > 6 A. (c) Weak AGN: log [NII]/Ha > -0.4 and W_Ha between 3 and 6 A. (d) RGs: W_Ha < 3 A. (e) Passive galaxies (actually, line-less galaxies): W_Ha and W_[NII] < 0.5 A. A comparative analysis of star formation histories and of other properties in these different classes of galaxies corroborates our proposed differentiation between RGs and weak AGN in the LINER-like family. (Abridged)Comment: Accepted for publication in MNRA

    The many faces of LINER-like galaxies: a WISE view

    Full text link
    We use the SDSS and WISE surveys to investigate the real nature of galaxies defined as LINERs in the BPT diagram. After establishing a mid-infrared colour W2-W3 = 2.5 as the optimal separator between galaxies with and without star formation, we investigate the loci of different galaxy classes in the W_{Ha} versus W2-W3 space. We find that: (1) A large fraction of LINER-like galaxies are emission-line retired galaxies, i.e galaxies which have stopped forming stars and are powered by hot low-mass evolved stars (HOLMES). Their W2-W3 colours show no sign of star formation and their Ha equivalent widths, W_{Ha}, are consistent with ionization by their old stellar populations. (2) Another important fraction have W2-W3 indicative of star formation. This includes objects located in the supposedly `pure AGN' zone of the BPT diagram. (3) A smaller fraction of LINER-like galaxies have no trace of star formation from W2-W3 and a high W_{Ha}, pointing to the presence of an AGN. (4) Finally, a few LINERs tagged as retired by their W_{Ha} but with W2-W3 values indicative of star formation are late-type galaxies whose SDSS spectra cover only the old `retired' bulge. This reinforces the view that LINER-like galaxies are a mixed bag of objects involving different physical phenomena and observational effects thrusted into the same locus of the BPT diagram.Comment: Accepted for publication in MNRAS; 9 pages, 6 figure

    Oblivious transfer based on quantum state computational distinguishability

    Full text link
    Oblivious transfer protocol is a basic building block in cryptography and is used to transfer information from a sender to a receiver in such a way that, at the end of the protocol, the sender does not know if the receiver got the message or not. Since Shor's quantum algorithm appeared, the security of most of classical cryptographic schemes has been compromised, as they rely on the fact that factoring is unfeasible. To overcome this, quantum mechanics has been used intensively in the past decades, and alternatives resistant to quantum attacks have been developed in order to fulfill the (potential) lack of security of a significant number of classical schemes. In this paper, we present a quantum computationally secure protocol for oblivious transfer between two parties, under the assumption of quantum hardness of state distinguishability. The protocol is feasible, in the sense that it is implementable in polynomial time

    Experimental Entanglement of Temporal Orders

    Get PDF
    The study of causal relations has recently been applied to the quantum realm, leading to the discovery that not all quantum processes have a definite causal structure. While such processes have previously been experimentally demonstrated, these demonstrations relied on the assumption that quantum theory can be applied to causal structures and laboratory operations. Here, we present the first demonstration of entangled temporal orders beyond the quantum formalism. We do so by proving the incompatibility of our experimental outcomes with a class of generalized probabilistic theories which satisfy the assumptions of locality and definite temporal orders. To this end, we derive physical constraints (in the form of a Bell-like inequality) on experimental outcomes within such a class of theories. We then experimentally invalidate these theories by violating the inequality, thus providing an experimental proof, outside the quantum formalism, that nature is incompatible with the assumption that the temporal order between events is definite locally.Comment: 20 pages, 8 figures. Thoroughly revised manuscript. Updated theory-independent proofs including new experimental dat
    corecore