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The study of causal relations has re-
cently been applied to the quantum realm,
leading to the discovery that not all
physical processes have a definite causal
structure. While indefinite causal pro-
cesses have previously been experimen-
tally shown, these proofs relied on the
quantum description of the experiments.
Yet, the same experimental data could also
be compatible with definite causal struc-
tures within different descriptions. Here,
we present the first demonstration of in-
definite temporal order outside of quan-
tum formalism. We show that our exper-
imental outcomes are incompatible with a
class of generalised probabilistic theories
satisfying the assumptions of locality and
definite temporal order. To this end, we
derive physical constraints (in the form of
a Bell-like inequality) on experimental out-
comes within such a class of theories. We
then experimentally invalidate these the-
ories by violating the inequality using en-
tangled temporal order. This provides ex-
perimental evidence that there exist cor-
relations in nature which are incompatible
with the assumptions of locality and defi-
nite temporal order.

1 Introduction

Bell’s theorem revolutionized the foundations
of physics, leading to experiments which could

Giulia Rubino: giulia.rubino@bristol.ac.uk

demonstrate that nature cannot be described by a
local-causal theory, and paving the way for mod-
ern quantum information [8, 12]. One of the
strengths of Bell’s theorem is that it allows one
to draw conclusions about nature without refer-
ring to the underlying physical theory. This is a
crucial feature, since “local causality” is conceived
as a hypothesis about a fundamental property of
nature, and, as such, its experimental violation
reveals a statement about how nature must (or
must not) be, and not just about any specific the-
ory used to describe it.

Over the past decades, tests of Bell’s theorem
have been performed with many different phys-
ical systems thereby entangling various observ-
ables [such as spin [25, 28, 39], polarization [6, 19,
20, 41], position [26], and energy [27, 37]] of two
or more particles. All these experimental tests in-
volve two or more parties making measurements
on entangled particles in distant laboratories, and
determining their correlations. These tests prove
that, in general, correlations between space-like
separated events cannot be explained on the ba-
sis of a past common cause and local choices of
measurements. However, since these correlations
are always no-signalling (i.e., the statistics ob-
served in one laboratory are independent of the
choices of measurements made in other labora-
tories), Bell’s theorem and related experimental
tests do not address specific causal relations be-
tween events in which an experimental interven-
tion may influence one of the events (i.e., signal-
ing correlations). This stronger notion of causal-
ity [11] is at the heart of the modern research
field of indefinite quantum causality, and is the
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subject of the present experimental test.

Thus far, in all established physical theories,
it was assumed that the order between events is
well-defined. This means that, that for any two
causally related events A and B, either A sig-
nals to B, or B signals to A. In the language
of quantum information, these two events could
be seen as the input and output of a quantum
channel. However, it has recently been realized
that quantum mechanics also allows for the ex-
istence of processes other than quantum chan-
nels, i.e., processes that are neither causally or-
dered, nor a probabilistic mixture of causally or-
dered processes. For these processes, it is gen-
uinely indefinite whether A signals to B or B
signals to A, and so they are called processes
with an indefinite causal structure. Under “pro-
cesses,” we define the set of causal relations be-
tween operations performed in different local lab-
oratories [11, 14, 35]. More precisely, a quantum
process is called causally separable if it can be
decomposed as a convex combination of causally
ordered processes, otherwise it is causally non-
separable. (Note that the term “temporal” order
is used here to refer to the order among opera-
tions which cannot be used to receive signals —
in particular, to unitary ones — whereas “causal”
order refers to more general operations which al-
low both receiving and sending signals between
laboratories.)

Recently, a method for certifying causal non-
separability, based on “causal witnesses,” was de-
veloped [5, 9, 34], and used to experimentally
demonstrate that a certain process — a quantum-
switch [13] — is causally non-separable [21, 40].
In the quantum-switch, a qubit is transmitted be-
tween two parties, and the order in which the par-
ties receive and act on it is entangled with a sec-
ond system. This can result in a scenario in which
operations are applied on the system in a quan-
tum superposition of different temporal orders.
The existence of such a superposition has been ex-
perimentally demonstrated [21, 36, 40]. However,
the certification of this “indefiniteness” of tempo-
ral orders was theory-dependent, requiring the as-
sumption that the system under investigation and
the applied operations were described by quan-
tum theory. In more detail, Ref. [21, 40] reported
the measurement of a value for a causal witness
that could not be explained by any model making
the following three assumptions: (a) there was

a definite causal order between the parties, (b)
each party acted only once, and (c) their opera-
tions are described by quantum theory. Neverthe-
less, the results of these experiments could poten-
tially have also been explained in accordance with
hypotheses (a) and (b) within a different theory
(i.e., outside the quantum theory). Thus, the na-
ture of indefinite causal order has not yet been
probed without the use of quantum formalism to
describe it.

In addition to theory-dependent causal wit-
nesses, there are also device-independent ways of
certifying indefinite causal order via “causal in-
equalities” [10, 35]. These inequalities only re-
quire measuring the probabilities of outcomes for
different parties in the process under considera-
tion without knowledge of the internal function-
ing of the devices. Any probabilities that show
signalling in only one direction — which can be
interpreted as an influence from the past to the
future —, or that is a convex mixture of pro-
cesses which allow signalling only in one direction
(from A to B or from B to A), satisfy causal in-
equalities. Nevertheless, it can be shown that the
quantum-switch satisfies all such causal inequali-
ties [see Refs. [5, 34] or the Suppl. Information for
details], and, currently, it is not known whether
or not it is possible to realize a process which vio-
lates a causal inequality. The question then arises
if it is at all possible to prove the existence of
an indefinite causal order in a manner that does
not rely on the quantum description of the ex-
periment. This is a relevant question, since such
an experimental verification of indefinite causal-
ity would show that this is not a feature of a
particular theory, but a fundamental property of
a whole class of theories which can be used to
describe nature.

In this work, we answer the above question af-
firmatively by presenting an experimental verifi-
cation of Bell’s theorem for temporal order, which
is formulated outside of the quantum framework.
To this end, we generalize a Bell inequality for
temporal order [43], and then experimentally vio-
late it. The Bell inequality is shown to be fulfilled
in a class of so-called “generalized probabilistic
theories” in which the states and the laboratory
operations are local, and the operations are ap-
plied in a definite order. The experimental viola-
tion of the Bell inequality presented here demon-
strates, independent of quantum formalism, that
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there exist correlations in nature which are in-
compatible with a class of theories assuming the
order of events as locally pre-defined.

Finally, we notice that, while our inequality is
valid for a class of generalized probabilistic the-
ories, it does depend on the internal functional-
ity of experimental devices, and in this sense it
does not have the same “device-independent” sta-
tus as the original Bell’s theorem. Thus, our work
provides a proof of indefinite causality which is
weaker than a violation of causal inequalities (i.e.,
a device-independent proof), but stronger than
a measurement of a causal witnesses (a theory-
dependent proof). It remains an open question,
even from a theoretical viewpoint, whether it is
possible to provide stronger evidence of indefinite
causality than a violation of the present Bell in-
equality for temporal order.

2 No-go theorem for definite temporal
order

We now introduce a no-go theorem for definite
temporal order that applies to a class of gen-
eralized probabilistic theories (GPTs) in which
the order of local events is assumed to be pre-
defined. GPTs are a general framework that spec-
ifies a set of operations which can be applied
on physical systems, assigns probabilities to ex-
perimental outcomes [16, 23, 24, 31], and which
encompasses all operational theories – including
classical probability theory and quantum theory
as special cases. The no-go theorem which we
present here was previously derived in the context
of gravity [43]. Our derivation uses an assump-
tion about the initial state of the systems which
is weaker than that in Ref. [43] (we consider Bell-
local states rather than separable states, which
are a subset of Bell-local states), and a differ-
ent notion of locality. (The relation between
the assumptions and implications of the current
work and those of Ref. [43] are analyzed in Ap-
pendix A-C.)

We first define what we mean by a causal order
in a GPT. Consider a system in the state ω ∈ Ω
of a GPT state space Ω and imagine two parties,
Alice and Bob, who perform some operations on
this state. For example, suppose that the opera-
tion in Alice’s laboratory is given by a transfor-
mationA and that in Bob’s laboratory is given by
a transformation B. Alice’s and Bob’s operations

are said to undergo a process that is “causally sep-
arable” in GPTs whenever Alice’s operation hap-
pens before or simultaneously to Bob’s (A � B),
Bob’s operation happens before or simultaneously
to Alice’s (B � A), or there is a convex mixture
of these two cases:

S(ω) = ζ · B
(
A(ω)

)
+ (1− ζ) · A

(
B(ω)

)
, (1)

where 0 6 ζ 6 1 is the probability with which
one or the other order is chosen and Y

(
X (·)

)
is

a composition of operations X and Y. (While
in the current work we limit our analysis to the
case of only N = 2 parties, an analogue rela-
tion can be established for N > 2 parties, giving
rise to a classical mixture of all possible permu-
tations among the N parties, or to a dynamical
causal order, where the causal order between op-
erations may depend on operations performed be-
forehand [2].) If a process cannot be written in
the form of Eq. (1), it is called a “causally non-
separable process.”

Within the GPT framework, we now consider
ω to be a state of the following composite system:
one system (the control system) governing the or-
der in which the operations A and B are applied,
and another system (the target system) on which
the operations are performed. We will further
consider that there are two parties, S1 and S2,
each possessing one such composite system. No
restrictions are applied to the state of the control
system (thus, for instance, the composite control
state may violate a Bell inequality).

In Appendix A we prove a no-go theorem, stat-
ing that any two-party system obeying the fol-
lowing three assumptions cannot violate a Bell
inequality (below we briefly summarize our theo-
rem, saving the detailed version for Appendix A).

I) The initial joint state of the two target sub-
systems is Bell-local (i.e., it satisfies the
Bell’s “local-causality" condition for any pair
of local measurements).

II) The laboratory operations preserve Bell-
locality of the state of the target subsystems
(i.e., when applied to a Bell-local state of
the target systems, they produce a Bell-local
state.).

III) The order of local operations on the two tar-
get subsystems is well-defined.
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We will briefly comment on assumptions I and II
below, and refer to Sec. 4 for an in-depth analysis
of all three assumptions.

In our experiment and for the class of GPTs
considered, we can demonstrate stronger condi-
tions than I and II. Indeed, the initial joint state
of the targets is separable within the GPTs; and
the laboratory transformations are local maps on
the target systems within the GPTs (i.e., they
transform separable states into separable states).
Then, I and II follow from these stronger condi-
tions since any separable state is Bell-local. We
could have formulated I and II in terms of sep-
arable states of the GPTs, but decided to leave
them in the present form, since Bell’s locality is
a weaker condition than separability, and the for-
mulation does not involve theory-dependent no-
tions.

There are two forms of violation of Assump-
tion II: IIa) The laboratory operations can induce
non-local interaction between the target subsys-
tems of parties S1 and S2. IIb) Within a single
party Si, i = 1, 2, the laboratory operations may
“couple” the control and target system. Such a
“coupling” could transfer existing non-local cor-
relations between the pair of controls to the pair
of targets, thereby enabling a violation of Bell in-
equalities. We will provide experimental evidence
that neither case occurs in our experiment.

In the next section, we will present a quan-
tum mechanical process that violates this no-go
theorem. Thus, at least one of the assumptions
must not hold for this process. In Sec. 4, we will
analyse our experimental data testing a Bell-like
inequality to provide evidence in support of as-
sumption I within the framework of GPTs. Con-
sequently, either assumption II does not hold, as-
sumption III does not hold, or both assumptions
are invalid. On the basis of the data collected
for the quantum-switch of system S1 (or S2) in-
dividually, we will show that it is not possible to
describe our results by violating only assumption
II. Thus, the only viable conclusion is that the
order of operations applied on each system Si is
indefinite (i.e., that assumption III is necessarily
false).

3 Entangled quantum-switch

To understand a single quantum-switch, first
imagine two parties, Alice and Bob, who are in

two closed laboratories, i.e., their only interaction
with the external environment is through input
and output systems. Suppose that each of the
parties performs an operation on the same qubit
(a “target” qubit), and that this qubit may be
sent first to Alice and then to Bob, or vice versa.
Now, in a quantum-switch, one governs the order
of the operations on the target qubit according to
the state of a second quantum system, a “control”
qubit. If the control qubit is placed in a superpo-
sition, this establishes a quantum-superposition
of the order of the two operations. For instance,
if the control qubit is in the state |0〉c, the tar-
get qubit is sent first to Alice and then to Bob,
and vice versa if the control qubit is in the state
|1〉c. When the control qubit is prepared in the
state

(
|0〉c + |1〉c

)
/
√

2, the resulting process has
been shown to be causally non-separable within
quantum mechanics [5, 13, 14, 40].

Next, consider two quantum-switches (S1 and
S2), each containing an Alice and a Bob. S1 and
S2 are prepared in a state where their control
qubits are entangled, but their target qubits are
in a product state (see Fig. 1):

|0〉t1 ⊗ |0〉
t
2 ⊗

( |0〉c1 ⊗ |0〉c2 − |1〉c1 ⊗ |1〉c2√
2

)
. (2)

The superscripts c and t refer to the control
and target qubits within one quantum-switch, re-
spectively, while the subscripts 1 and 2 refer to
quantum-switch S1 and S2. Since we will attempt
to observe a Bell violation with the target qubits,
which are in a separable state, this initial condi-
tion satisfies assumption I in quantum theory.

Given this input state and the action of an in-
dividual quantum-switch, it is straightforward to
calculate the output of the entangled quantum-
switch system

1√
2

(
U1BU1A |0〉

t
1

)
⊗ |0〉c1 ⊗

(
U2BU2A |0〉

t
2

)
⊗ |0〉c2

(3)

− 1√
2

(
U1AU1B |0〉

t
1

)
⊗ |1〉c1 ⊗

(
U2AU2B |0〉

t
2

)
⊗ |1〉c2 ,

where UiA and UiB (i = 1, 2) are the unitaries
performed by the two parties Alice and Bob inside
each quantum-switch Si.

Next, we measure the two control qubits in the
basis {|+〉 〈+| , |−〉 〈−|}. If we observe both of the
control qubits in the same state (either |+〉c1 |+〉

c
2

or |−〉c1 |−〉
c
2), the target qubits will be in the (in
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Figure 1 Entangled quantum-switch. Our work is
based on two quantum-switches (S1 and S2). In each
quantum-switch, there are two parties, Alice (UiA) and
Bob (UiB). A target qubit is first sent to one party, and
then to the other. The order in which the qubit is sent to
the two parties is governed by the state of an additional
qubit: if the state of the control qubit is |0〉ci , the target
qubit is sent first to Alice and then Bob (Panel a), and
vice versa if the control qubit is in the state |1〉ci (Panel
b). In our work, we entangle the control qubits (Panel
c). In this case, the order in which the target qubit in
quantum-switch S1 passes through U1A and U1B is
entangled with the order in which the target qubit in
quantum-switch S2 passes through U2A and U2B . The
control qubits are measured in the basis {|+〉ci , |−〉

c
i}. If

the orders inside the two quantum-switches are
entangled, it will be possible to violate a Bell inequality
by measuring the target qubits after the
quantum-switches (BM). This is possible even if the
target qubits start in a separable state and only local
operations are applied within each quantum-switch.

general) unnormalised state

1√
2
(
U1BU1A |0〉

t
1 ⊗ U2BU2A |0〉

t
2

− U1AU1B |0〉
t
1 ⊗ U2AU2B |0〉

t
2
)
, (4)

while, if we find the control qubits in orthogonal
states (either |+〉c1 |−〉

c
2 or |−〉c1 |+〉

c
2), the sign be-

tween the two terms in the superposition in the
equation above is “+.” In general, depending on
the choice of the unitaries in the two quantum-
switches, the target qubits will be left either in a
separable or in an entangled state. In particular,
if we choose the gates

U1A = U2A = σz, (5a)

U1B = U2B = 1 + iσx√
2

, (5b)

where σx ans σz are the Pauli operators, the state
of the target qubits (upon finding the control

qubits in |±〉c1 |±〉
c
2) becomes

1√
2
(
|l〉t1 |l〉

t
2 − |r〉

t
1 |r〉

t
2
)
, (6)

where |r〉 =
(
|0〉 − i |1〉

)
/
√

2 and |l〉 =
(
|0〉 +

i |1〉
)
/
√

2 (analogously, one gets
(
|l〉t1 |l〉

t
2 +

|r〉t1 |r〉
t
2
)
/
√

2 when the control qubit is in
|±〉c1 |∓〉

c
2.). This is a maximally entangled state

and, as a result, one can now violate a Bell in-
equality on the target qubits.

Within quantum theory, the entanglement be-
tween the targets and the resulting violation of
the Bell inequality can be explained in terms of
the indefiniteness of the temporal orders in the
two quantum-switches. In other words, such en-
tanglement is not “generated,” but rather “trans-
ferred” from the control qubits by means of the
indefinite temporal order of the unitaries ap-
plied. A related interpretation of the viola-
tion in quantum mechanics is in terms of time-
delocalized quantum operations [33] and causal
reference frames [3], according to which a frame
can be chosen such that while Bob’s operation
acts at a fixed time, Alice’s operation is in a su-
perposition of being implemented before and af-
ter Bob’s operation, thus resulting in an indefinite
causal order between them.

In the class of GPTs considered here, the pres-
ence of non-classical correlations can be deter-
mined through a violation of a Bell inequality. In
our case, the violation of a Bell inequality with
the target subsystems implies the violation of the
no-go theorem for temporal order, thereby prov-
ing that no underlying GPTs where assumptions
I, II and III hold can explain the experimental
data. We will experimentally confirm that I holds
both in quantum mechanics, and in our class of
GPTs (as detailed in Appendix D). Then, we will
show, both within quantum mechanics and in our
class of GPTs, that one cannot describe our re-
sults if only assumption II is invalid. We will thus
conclude that either assumption III is wrong or
both assumptions II and III are false, hence prov-
ing the presence of indefinite causal order beyond
the quantum framework.

3.1 Experimental scheme
We create a quantum-switch with entangled con-
trol qubits using a photonic set-up. Let us
first consider a single quantum-switch. Each
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quantum-switch applies gates on a target qubit,
where the gates’ order depends on the state of
a control qubit. Experimentally, we encode the
control qubit in a path degree of freedom (DOF),
and the target qubit in the polarization DOF of
a single photon. The photon is initially placed
in a superposition of two paths (as explained in
Fig. 2 and Appendix E). These paths are la-
beled 01 and 11 for quantum-switch S1 and 02
and 12 for quantum-switch S2 in Fig. 2. The two
paths are then routed through a two-loop Mach-
Zehnder interferometer [36, 40]. The 0i paths
lead the photons through a set of gates acting
on the polarization DOF in the order UiA � UiB .
While the paths 1i guide the photons through
the gates in the opposite order UiB � UiA . To
generate the maximally entangled state between
the target qubits in Eq. (6), we need to imple-
ment the non-commuting gates UiA = σz and
UiB = (1+iσx)/

√
2, which we do with waveplates.

In particular, a half-waveplate (HWP) at 0◦ for
σz and a sequence of quarter-waveplate (QWP)
and HWP both at 45◦ for (1 + iσx)/

√
2). After

this, the two paths are recombined on a 50/50
beamsplitter (BS) — which projects the path
DOF in the basis {|+〉 〈+| , |−〉 〈−|}. The path
lengths and the relative phases are set by means
of a piezo-driven trombone-arm delay line. At
the two outputs of each interferometer, QWPs,
HWPs and polarizing beam splitters (PBSs) are
used to perform arbitrary polarization measure-
ments on the target qubits.

To entangle the two quantum-switches, we first
entangle the path DOFs of the two photons.
As explained in Appendix E, we generate path-
entangled photon pairs that are separable in their
polarization DOF:

|Φ−〉path
1,2 ⊗ (|H〉1 |H〉2)polar. =( |0〉1 |0〉2 − |1〉1 |1〉2√

2

)path
⊗ (|H〉1 |H〉2)polar..

(7)

Each photon is thus delocalized over two paths.
The two photons are then sent to their respective
quantum-switches, and, since the control qubits
began in an entangled state, the order in which
the gates act on the two target qubits becomes
entangled.

Through this scheme, we engineered a situa-
tion wherein the only way entanglement can be
transferred from one pair of systems to another

is by means of causally non-separable processes.
In our experiment, this transfer takes place be-
tween different DOFs of photon pairs. Although
it is often easy to transfer the entanglement from
one DOF to another, this is typically done with
a device that directly couples the two DOFs; e.g.,
in the case of path-polarization transfer, a PBS
could be used. In our experiment, we used an
entangled quantum-switch to accomplish this in-
terchange. Our quantum-switches do not con-
tain any device which directly couples these DOFs
(only waveplates, which act solely on the polar-
ization state, and 50/50 BSs, which act solely on
the path state). Rather, here the interchange oc-
curs because the control qubit (the path) governs
the order of the application of gates on the tar-
get qubit (the polarization). Then, since we be-
gin with an entangled state of the control qubits,
this state is transferred to the target qubits via
an indefinite order of the application of the gates.
In other words, by choosing a specific set of op-
erations, the temporal superposition of the ap-
plication of these operations is mapped onto a
superposition of orthogonal states. As a result,
this transfer of entanglement is the signature of
an indefinite temporal order.

4 Results

Our goal is to demonstrate that the order of ap-
plication of the gates within the two quantum-
switches is genuinely indefinite without assuming
that the laboratory operations and the states of
the systems are described by quantum theory. We
can arrive at this conclusion in three steps. We
will first show experimental data that violate a
Bell inequality. From this we can assert that at
least one of the three assumptions must be false.
We will then prove that assumption I is satisfied
in our experiment using a class of GPTs. Thus,
one of the remaining assumptions (i.e., assump-
tions II and/or III) must not hold. We will anal-
yse the case in which only assumption II does not
hold within the set of GPTs. By acquiring addi-
tional data on a single quantum-switch, we will
show that such scenario cannot reproduce the re-
sults of our experiment. Consequently, the only
two possible explanations are that either assump-
tion III does not hold, or that both assumptions
II and III are false. In either case, assumption
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Figure 2 Experimental implementation of an entangled quantum-switch. Each quantum-switch is
composed of a two-loop Mach-Zehnder interferometer. The interferometers start in the photon-pair source, wherein
photon 1 and photon 2 are placed in superposition of the paths 01 and 11, and 02 and 12, respectively (see
Appendix E). (For simplicity, we have drawn these paths as fibers, however the photons are transmitted via free-space
from the source to the experiment.) These paths are routed such that path 0i sees gate UiA and then gate UiB , and
vice versa for the path 1i. Each gate, acting on the polarization degree of freedom, is made up of waveplates (as
described in the main text). The paths 0i and 1i are then combined on a beam splitter (BS). In quantum-switch S1
(S2), the photon is detected after the polarization measurement at M1 or M2 (M3 or M4). Both quantum-switches
contain two compensation half-waveplate at the beginning and at the end of the reflected arm, so as to compensate for
the phase shifts due to the reflection from the polarizing beam splitters composing the source (shown in Fig. 3).
Together with the BS (which applies a Hadamard gate to the qubit encoded in the path DOF), detecting the photon at
M1 or M2 (M3 or M4) projects the path qubit on |+〉 or |−〉, respectively. Furthermore, within each measurement Mi,
the polarization qubit can be measured in any basis by a combination of a quarter-waveplate (QWP), half-waveplate
(HWP), and polarizing beam splitter (PBS).

III must be false, and therefore the local opera-
tions within the two quantum-switches have been
applied in an indefinite temporal order.

4.1 Violation of the no-go theorem

We begin by performing a Bell test between the
target states at the output of the apparatus. This
allows us to experimentally probe a conjunction
of all three assumptions. We realize the Bell test
(more specifically, we measure a Clauser-Horne-
Shimony-Holt (CHSH) inequality [15]) on the po-
larization DOF, using four equivalent measure-
ment set-ups (orange and blue boxes in Fig. 2).
Since the 50/50 BSs apply a Hadamard gate on
the path qubits, we post-select the control qubits
in the same state (either |+〉c1 |+〉

c
2 or |−〉c1 |−〉

c
2)

by grouping the results of M1 with M3 (orange
boxes) and M2 with M4 (blue boxes). We obtain
Starget = 2.55 ± 0.08. This violates the inequal-
ity, and thus also the no-go theorem, by almost
7 standard deviations. Therefore, in our class of
GPTs, no theory satisfying assumptions I, II and

III is compatible with the experimental data.

4.2 Verification of assumption I

We now proceed to test the validity of assumption
I, which says that the joint target state (shared
between system S1 and S2) is Bell-local. We
will show experimentally that, within the limits
of our experimental precision, the target systems
are compatible with a product state in the class of
GPTs under consideration, and they are therefore
Bell-local.

To test assumption I within a class of GPT, we
assume that the set of “fiducial measurements”
of the class of GPTs contains “quantum fiducial
measurements” as a subset. Moreover, we assume
that pure states in quantum theory are also pure
states in GPTs. In this sense, quantum theory is
embeddable in the GPT. This is similar to how
classical theory can be embedded in quantum the-
ory (i.e., classical theory has one fiducial measure-
ment in the “computational basis”). In particular,
we consider a class of GPTs wherein the state
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space of a single two-level system is described by
a d-dimensional Bloch ball [16, 30] (i.e., there are
three quantum fiducial measurements, and d− 3
non-quantum fiducial measurements), with d > 3
in general. The methodological advantage of con-
sidering such theories is that, in certain cases,
the structure of the state can be inferred despite
the fact that only quantum measurements can
be made (i.e., only measurements in the three-
dimensional quantum subspace). For this class
of theories, it was shown that a single system
is in a pure state if there exists a measurement
for which the system returns a given result with
probability one. Similarly, a bipartite system is in
a pure product state, if the above statement ap-
plies to each individual system. In more detail,
in GPTs a state is pure if it cannot be written
as a non-trivial mixture of other states. More-
over, a bipartite system is in a product state if,
for all local measurements, the probabilities for
outcome pairs on a bipartite-state are equal to
the product of the two marginal probabilities of
each subsystem. Such a state has perfect correla-
tions only for a pair of fiducial measurements, it
exhibits no further correlations in any other pair
of fiducial measurements, and it cannot violate a
Bell inequality [16, 23, 24, 31].

For our target photon pair we demonstrated
that both photons return value H with certainty.
This means that, already from a pair of quantum
fiducial measurements, one can conclude that, up
to experimental imperfections, the state is a pure
product state, and therefore it cannot violate a
Bell inequality. This supports the validity of as-
sumption I in the special case of Bloch-vector the-
ories (see Appendix A). In Table S1, we compare
the probabilities for outcome pairs on a bipartite-
state to the product of the two marginal proba-
bilities of each subsystem. The excellent agree-
ment between the two probability distributions
indicates that the joint target state is indeed a
pure product state, and cannot violate a Bell in-
equality. This proves that assumption I of our
no-go theorem holds for the class of GPTs under
consideration. We quantify to what extent the
two distributions agree by calculating the root-
mean-square (RMS) difference between the two
distributions, resulting in an average difference
of 0.6 · 10−2 ± 2.7 · 10−2. Although this value is
consistent with zero, one could imagine that this
small difference is in fact caused by correlations

between the two target systems. In Appendix D
we show, however, that such small correlations
can only give rise to a vanishingly small violation
of Bell’s inequality. The possible level of viola-
tion from this amount of potential coupling is in-
sufficient to explain our experimentally observed
violation. Therefore, we have confirmed that the
joint target system starts in an (approximately)
separable state. Additionally, in Appendix E, we
experimentally show that the joint control sys-
tem is initially entangled. We then send this joint
state into our two quantum-switches and perform
measurements on the output state. Furthermore,
Appendix G reports the results of the same stud-
ies presented above when a quantum-mechanical
description of the experimental set-up is assumed.

Having proven, both in quantum theory and
within the class of GPTs, that our no-go theo-
rem is violated and that assumption I is justified,
we can conclude that either assumption II, or as-
sumption III, or both must be false. We will now
consider the case in which only assumption II is
false.

4.3 Verification of assumption II

The second assumption of our no-go theorem says
that the laboratory operations performed in the
two quantum-switches cannot transform the joint
state of the target systems of S1 and S2 from a
local state to a non-local one. We will again ex-
perimentally prove a stronger condition, namely
that laboratory operations are local maps on the
targets in the considered GPTs. As discussed ear-
lier, this condition can be violated for two rea-
sons. First, the laboratory operations (IIa) may
induce a direct interaction between two targets.
To avoid this, one could perform the operations
with a space-like separation in which case the con-
dition would be guaranteed in any theory obeying
relativistic locality. However, in our experiment,
we make the (well-justified) device-dependent as-
sumption that the laboratory operations are local
transformations within S1 and S2 in GPTs, since
the transformations of the systems take place at
spatially separated parts of the optical table. As
a consequence, the first form of violation (IIa) of
assumption II arguably does not take place in our
experiment.

Let us consider now the second, more substan-
tial, way in which assumption II could be vio-
lated. Since we are analysing the case in which
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only assumption II is false while assumption III
holds, we will now study the scenario in which the
laboratory operations occur only in a causally-
ordered manner.

The second form of violation of assumption II
is that the laboratory operations of one party Si
could “couple” the control and the target systems
(IIb). Such a coupling would make it possible
to transfer non-local correlations from the con-
trol systems of the two parties S1 and S2 to their
target systems, and therefore a violation of Bell’s
inequalities would be possible.

We can experimentally prove that, within the
class of GPTs considered, the laboratory opera-
tions transform product states of the control and
the target subsystems into product states within
each quantum-switch. We will do so using a sim-
ilar technique as for assumption I. We start by
placing bounds on the degree of coupling between
the target and the control qubits within a single
quantum-switch in the presence of only one of
the two operations (i.e., only UA or only UB) in-
side the quantum-switch. We perform the full set
of quantum fiducial measurements. With this, we
show that the joint probabilities of the target and
the control subsystems are factorizable into the
products of the two marginal probabilities of each
subsystem in the case where either only UA or UB
is inserted inside a single quantum-switch. From
this we can conclude that the joint probabilities
must also remain factorizable even when both UA
and UB are inserted if the order is well-defined
(or a classical mixture of the two well-defined or-
ders) [1]. In other words, in our GPTs, the optical
elements do not couple the control and the target
subsystem in the “quantum subspace” of the GPT
state space. Moreover, the marginal probabilities
measured on the control and the target subsystem
correspond to a pure (product) state. From this
we also conclude that there can be no coupling in
the “non-quantum subspace” either. We analyse
this by performing a set of measurements on the
joint control-target system, and by showing that
the joint probabilities can be described by the
product of the marginal probabilities (see Tables
S2-S3, and Appendix F for more details). The
RMS difference between the two distributions is,
on average, 0.02± 0.03. This value is within one
standard deviation of zero, confirming that the
probability distribution is consistent with that of
a product state. As we discussed for assumption

1, this small discrepancy could be caused by cor-
relations between the control and the target sys-
tems. However, as we show in Appendix F, these
correlations are too weak to explain our experi-
mentally observed violation of Bell’s inequality.

4.4 Implications for the temporal order

In the previous subsection we proved that the lab-
oratory operations do not couple the control and
target systems when they are applied in a well-
defined order. This means that, for our exper-
iment, whenever assumption III holds, assump-
tion II must also hold. Because the statement
a ⇒ b is logically equivalent to not b ⇒ not a,
this further implies that if assumption II is in-
valid, then assumption III must also be invalid.
It follows that the only two possible scenarios
are that (1) assumption II is wrong, and there-
fore III is also wrong, or (2) assumption III is
false, independently of assumption II. In either
case, it is not possible to explain our experimental
data unless assumption III is discarded. We thus
conclude that the local operations in our experi-
ment were applied in an indefinite order. (Notice
that it is not a logical necessity that every time
III holds, II must hold in turn. In general, one
could find a system with a defined causal order
(III) in which the operations are non-local (not-
II). This would be the case, for instance, of cir-
cuits where control and target systems undergo
entangling gates in a definite causal order (e.g.,
CNOT). Nevertheless, this was shown not to be
the case in our experiment, as operations UA and
UB were proven not not couple control and target
systems when applied individually.)

5 Discussion

In this work, we entangled the temporal orders
between operations applied by two parties and
experimentally showed that the resulting tem-
poral order is indefinite, by violating a Bell in-
equality using the joint target system after the
quantum-switches. We thus verified that the data
collected by entangling temporal orders in the
quantum-switches cannot be described by a class
of (generalized probabilistic) theories under the
assumption that the initial joint target state is
Bell-local, the operations on the target states are
local, and they have a pre-defined order. This
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did not require the assumption that the systems
and the operations are described by the quan-
tum formalism. Clearly, for our demonstration
to be loophole-free (as proposed in Ref. [43]), the
standard Bell loopholes (fair-sampling and local-
ity) would need to be closed. Further loopholes
can arise related to the implementation of the
quantum-switch. In fact, it is known that ex-
perimental data produced by the quantum-switch
can be simulated by a causally-separable pro-
cess if at least one of the operations (either A
or B) is performed two or more times. In re-
lation to the experimental implementations of
the quantum-switch, this is the so-called “single-
usage loophole.” Closing this loophole would re-
quire an operational verification that each oper-
ation in the quantum-switch is performed only
once. For example, this could include implemen-
tation of a “counter” that would estimate the
number of times an operation is performed, or
a process tomography on time-delocalized quan-
tum systems [33]. However, our experiment is
immune to the single-usage loophole. Indeed, a
multiple usage of operations in a defined causal
order on either side of the Bell test cannot be si-
multaneously shown to be local and violate the
Bell inequality for temporal order.

All previous studies involving quantum pro-
cesses with indefinite temporal order achieved
their goal by superposing the order of operations,
rather than entangling them. The first proposal
to entangle the temporal order was made only re-
cently [43]. Here we show that the basis of this
theoretical concept is in fact experimentally ac-
cessible. Moreover, we exploit this resource as
a new means to validate indefinite causal struc-
tures. Techniques to characterize these struc-
tures are becoming increasingly relevant, as it is
known that these processes can lead to logarith-
mic [38] advantages in query complexity, and ex-
ponential advantages in quantum communication
tasks [4, 14, 18, 22].
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A Proof of no-go theorem for temporal
order

All previous experimental studies of causally non-
separable processes [36, 40] were dependent on
the validity of the quantum theory (i.e., they were
theory-dependent), and all known physically re-
alizable processes satisfy all causal inequalities
(see the Suppl. Information) [5, 34]. The lat-
ter means that experimental data taken from
a given causally non-separable quantum process
could still be understood as arising in causal man-
ner, for example from a process with a definite
causal order in an underlying generalized proba-
bilistic theory (GPT). Therefore, it is unknown
whether a fully theory-independent experimental
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proof of indefinite causal order is possible.
In our current work, we relate a violation of a

Bell inequality to the violation of a no-go theo-
rem for temporal order, as proposed in Ref. [43].
This results in a proof of causal indefiniteness out-
side of the quantum framework as it is valid for
a large class of generalized probabilistic theories.
In this section, we provide a rigorous introduction
to such no-go theorem for temporal order.

We will begin by giving a brief introduction
to the basic elements of GPTs which are neces-
sary for our no-go theorem. A more detailed dis-
cussion of the GPT framework can be found in
Ref. [7, 23, 31].

In a GPT, a system is described by a state ω
that specifies outcome probabilities for all mea-
surements that can be performed on it. A com-
plete representation of the state is given by spec-
ifying the outcome probabilities of a so-called
“fiducial set.” The smallest such set defines the
number d of degrees of freedom of the system. We
restrict our consideration here to binary systems
that have two perfectly distinguishable states and
no more. For example, the fiducial set for a two-
level system in quantum theory consists of the
(three) probability outcomes of spin projections
along x, y and z. The state space is a compact
and convex set Ω embedded in a vector space.
The extremal states of Ω that cannot be decom-
posed as a convex mixture of other states are
called “pure states.” An effect e is defined as a
linear functional on Ω that maps each state onto
a probability, i.e., e : Ω→ [0, 1], where e(ω) is the
probability to obtain an outcome on the state ω.
The linearity is required to preserve the convex
structure of the state space.

A transformation U is a linear map from a state
to a state, i.e., U : Ω → Ω. The transformation
is linear for the same reason that probabilities
have to be linear maps of states. The sequence
of transformations U1, ... , Un, in which transfor-
mation U1 “precedes” transformation U2, which
“precedes” U3, etc., is represented by a composi-
tion of maps: Un ◦ ... ◦ U1. This defines a defi-
nite order of transformations, which we denote as
U1 � ... � Un.

We will now introduce a generalization of the
no-go theorem for temporal order, which was
originally proposed in Ref. [43].

In the framework of a GPT, the state of a com-
posite system shared between two parties S1 and

S2 is given by ω1,2 ∈ Ω1,2, where Ω1,2 is the state
space of a composite system. The state of a com-
posite system is given by a multiplet consisting of
the local states ω1 ∈ Ω1 and ω2 ∈ Ω2 of individual
systems, the correlation tensor T̂ and a potential
global parameter ξ [16, 23, 24, 31]:

ω1,2 = ω1,2(ω1, ω2, T̂ , ξ). (8)

The fact that subsystems are themselves systems
implies that each has a well-defined reduced state
ω1, ω2 which does not depend on which trans-
formations and measurements are performed on
the other subsystem; this is often referred to as
“no-signaling.” We also assume that transfor-
mations and measurements performed on sub-
systems commute with each other, so that one
correlation tensor is enough to describe correla-
tions between them. If this were not the case, we
would need to introduce two correlation tensors,
one when S1 applies operations before S2, and the
other when S2 performs operations before S1. Fi-
nally, the states in GPT need not to satisfy the
local tomography condition (stating that reduced
states and correlation tensor completely describe
the systems’ state), but may include a global pa-
rameter ξ.

For the present case of binary systems, the
components of the state in Eq. (8) are given by

ω
(i)
1 = p(i)(o1 = 1)− p(i)(o1 = −1), (9a)

ω
(j)
2 = p(j)(o2 = 1)− p(j)(o2 = −1), (9b)

T (i,j) = p(i,j)(o1 o2 = 1)− p(i,j)(o1 o2 = −1),
(9c)

where i, j = 1, ..., d. Here, for example, p(i)(o1 =
1) is the probability to obtain the outcome o1 = 1
when the i-th measurement is performed on the
first subsystem, and p(i,j)(o1 o2 = 1) is the joint
probability to obtain correlated results (i.e., ei-
ther o1 = o2 = +1 or o1 = o2 = −1) when the
i-th measurement is performed on the first sub-
system and the j-th measurement on the second
one.

An effect e12 that maps a state onto a proba-
bility for a pair of local measurements is given by
e12 = e12(r1, r2, r1r

T
2 ), where ri is the effect on

the state of i-th system, and rT denotes trans-
position of r. (Note that the global parameter
does not contribute to the probability for a pair
of local measurements). The probability to ob-
tain the effect e12 when the system is prepared in
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the state ω12 is given by

p(e12|ω12) =1
4
[
1 + (ω1 · r1)

+ (ω2 · r2) + (r2 · T̂ r1)
]
, (10)

where (x · y) is the Euclidean scalar product be-
tween two d-dimensional real vectors x and y.

The product state is represented by ωp =
ωp(η1, η2, η1η

T
2 , ξp), where the correlation tensor

is of a product form. If we perform a pair of local
measurements on the arbitrary product state, the
outcome probability factorizes into the product of
the local outcome probabilities.

We next introduce a pair of local (reversible)
transformations (U1, U2) : Ω12 → Ω12 as a lin-
ear map from the space of states of a composite
system to itself:

(U1, U2)(ω12) = (U1ω1, U2ω2, U1T̂U
T
2 , ξ

′), (11)

where the global parameter ξ′ is, in general,
changed under the transformations (U1, U2).
Since testing our Bell inequality involves only lo-
cal transformations and measurements, it is suf-
ficient to specify effects for those measurements.

In our experiment, ω1 and ω2 themselves are
states of composite systems each consisting of a
“control” and a “target” subsystem. Thus, the
entire system under investigation consists of four
subsystems, a control and a target subsystems of
S1 and a control and a target subsystems of S2.
The overall state is

ω1,2,3,4 = ω1,2,3,4(ωt1, ωc1, ωt2, ωc2, ...,
T̂ ij , ..., T̂ ijk, ..., T̂ 1234,Ξ), (12)

where c and t refer to the terms “control” and
“target” subsystems, T̂ ij , T̂ ijk and T̂ 1234 are cor-
relation (sub)tensors describing correlations be-
tween pairs {i, j}, triple {i, j, k} and quadruple
{1, 2, 3, 4} of subsystems, respectively, and Ξ is
the set of all global parameters.

The no-go theorem concerns the reduced state
of the two target systems as given by

ωt1,2 = ωt1,2(ωt1, ωt2, T̂ tt, ξt), (13)

where ωt1 and ωt2 are states of the target subsys-
tems of S1 and S2, T̂ tt is their correlation tensor,
and ξt is the corresponding global parameter.

Leveraging these definitions, we now present
three assumptions, which are the fulcrum of our
no-go theorem for a definite local causal order.

1. The initial joint state of the target sys-
tem ωt1,2 is Bell-local (i.e., it satisfies Bell’s local-
causality condition for all pairs of measurements)

Suppose that the two observers can each per-
form a measurement O1 and O2, respectively.
We label m1 and m2 as arbitrary measurement
choices of S1 and S2, and o1 and o2 as the corre-
sponding outcomes. Under these conditions, we
suppose that probabilities obtained from any such
measurements can be described through a local
hidden variables theory (i.e., in Bell’s terms, a
theory that satisfy “local causality”), and there-
fore it is associated to the probability distribution

p(o1, o2|m1,m2, ω
t
1,2) = (14)∫

ρ(λ) p(o1|m1, λ, ω
t
1,2) p(o2|m2, λ, ω

t
1,2) dλ,

where λ is often referred to as a “hidden variable.”
We implicitly assume the “freedom of choice” con-
dition — the assumption that the choices of the
measurement settings are independent of λ — is
fulfilled.

2. The laboratory operations are represented
by local transformations U ti on the target subsys-
tems. If they are applied to a Bell-local state of
the targets, the state remains Bell-local.

This is satisfied by definition, since in the
GPTs the action of a transformation followed by
a (fixed) measurement can be understood as an-
other measurement, and the initial state is as-
sumed to satisfy Bell’s condition of local causal-
ity for all pairs of local measurements. Therefore,
the action of a pair of local transformations can-
not produce a non-local Bell state from a local
state.

3. The order of S1’s and S2’s operations on the
target system is well defined.

Suppose first that the order of application of
the local operations performed inside quantum-
switch S1 (U t1A

� U t1B
� . . . ) and those per-

formed inside quantum-switch S2 (U t2A
� U t2B

�
. . . ) are fixed. Since an ordered sequence of local
transformations is still a local transformation, if
a Bell-local state undergoes such a transforma-
tion on S1’s and S2’s sides, it remains Bell-local.
The state remains Bell-local even if the order of
operations is chosen with a given probability dis-
tribution due to convexity. The mutual order be-
tween S1’s and S2’s operations is irrelevant, since
we have assumed the two classes of operations to
commute.
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Theorem. No states, set of transformations and
measurements which obey the assumptions I-III
can result in violation of a Bell inequality.

Proof. Following I, suppose that the initial target
state ωt1,2 is Bell-local. This means that Eq. (14)
is fulfilled for an arbitrary pair of local measure-
ments. Because of III, operations in S1’s and
in S2’s laboratories are applied in a definite or-
der, say U t1A

� U t1B
� . . . in S1’s side, and

U t2A
� U t2B

� . . . in S2’s side. The state evolves,
therefore, under a composition of the local oper-
ations as

. . . (U t1B , U
t
2B) ◦ (U t1A , U

t
2A)(ωt1,2).

Let us restrict ourselves to the case of only two
transformations per quantum-switch (U tA and
U tB). After the pairs of operations are applied
in order U t1A

� U t1B
and U t2A

� U t2B
on the two

sides, the state becomes

ωt1,2
′ = (U t1B , U

t
2B) ◦ (U t1A , U

t
2A)(ωt1,2)

=
(
U t1B ◦ U

t
1A , U

t
2B ◦ U

t
2A

)
(ωt1,2) (15)

which is still local due to I - III. Hence

p(o1, o2|m1,m2, ω
t
1,2
′) = (16)∫

ρ(λ) p(o1|m1, λ, ω
t
1,2
′) · p(o2|m2, λ, ω

t
1,2
′) dλ.

In general, the order of operations does not need
to be fixed, but can be specified probabilistically
by a further hidden variable ν, whose different
values correspond to different permutations of
the order of operations. We obtain

p(o1, o2|m1,m2) =
∫∫

ρ(λ, ν) p(o1|m1, λ, ω
t,ν
1,2)

· p(o2|m2, λ, ω
t,ν
1,2) dλ dν, (17)

where ρ(λ, ν) is the joint probability distribution
over the two types of variables, and ωt,ν1,2 is the
final state of the target systems upon application
of the transformations in the order given by ν.
Thus, we conclude that a local target state sub-

jected to the action of a set of local operations
applied in a pre-defined order can by no means
lead to the violation of Bell inequalities, even if
the order is chosen probabilistically in each run
of the experiment. This concludes the proof.

B Device-independency and theory-
independency
Causal witnesses, violation of Bell inequalities for
temporal order, and violation of causal inequali-
ties build a hierarchy of the notion of indefinite
causality. The weakest notion of indefinite causal-
ity is that of causal non-separability, which is for-
mulated using quantum theory. A violation of a
causal inequality is the strongest notion as it is
formulated solely in terms of observable proba-
bilities p(a, b|x, y) without any assumption about
the internal function of experimental devices —
it is therefore device-independent. The violation
of a Bell inequality for temporal order should
be considered, in our view, a stronger proof of
indefinite causality than the measurement of a
causal witness, but a weaker proof than a viola-
tion of a causal inequality. The reason why it is
weaker than a causal inequality violation is that,
although it too is formulated in terms of the prob-
abilities p(a, b|x, y, ω), it also involves the notion
of state ω and the assumption how laboratory
operations act on it (see Appendix A) — this
causes the proof to be device-dependent. How-
ever, it can be defined for a class of generalized
probabilistic theories, and therefore it does not
rely on the quantum formalism. It is thus more
general than the notion of a causal witness. Al-
though the quantum-switch violates a weaker no-
tion of causality, shaped for quantum theory, it
cannot violate the stronger (device-independent)
notion of causal inequalities. The open question
addressed in our work is then whether we can
still use the quantum-switch to perform a proof
of indefinite causal order independent of quan-
tum formalism. The present experimental study
provides an affirmative answer to this question.

C Relation between the present work
and Ref. [43]
In Ref. [43], the position of a massive object
serves as a “control” quantum system and a quan-
tum system (e.g., a photon) that is exchanged
between Alice’s and Bob’s laboratory as a “tar-
get” system. By putting the massive object in a
macroscopic superposition of two positions, one
closer to Alice’s and the other closer to Bob’s
position, one induces a relative time dilation be-
tween Alice’s and Bob’s laboratory. The super-
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position of massive objects can effectively lead to
“entanglement” of the temporal order between lo-
cal operations, enabling the violation of a Bell-
type inequality. In the conceptual framework
of general relativity, the resource for the viola-
tion is a “non-classical space-time” created by
macroscopic superposition of large masses. In
the second-quantized picture, the superposition
can be seen as entanglement in the Fock basis,
and the scheme enables one to “swap” this entan-
glement to the final entanglement of the target
systems. Unfortunately, the physical demands
of the proposal make that experiment infeasible.
However, quantum control of the order of events
can also be achieved without the use of gravita-
tional interaction. This can be done, for example,
in an extended quantum circuit model, wherein
the order of applied quantum gates is coherently
controlled by an ancillary system (the quantum-
switch). The difference between the two scheme
is that in the gravitational scheme, the spatio-
temporal distance of any pair of events in a space-
time region is influenced by a superposition state
of the mass, whereas in the linear optical imple-
mentation, only the order of the gates applied on
the propagating system (e.g., photons) is indefi-
nite.

A more detailed analysis of the differences and
similarities between the gravitational quantum-
switch and its photonic counterpart here pre-
sented is given in the Suppl. Information -
Sec. III.

D Experimental proof of assumption I
in GPTs

Recall that assumption I says that the initial tar-
get states do not violate a Bell inequality. In
the notation introduced above, the initial target
state is ωt1,2. Our demonstration of assumption
I presented here is based solely on experimental
data, and can be shown to be valid for a class of
GPTs. Our goal is to prove that the input state
is a product state, and thus it is local.

Let us denote the probabilities for measure-
ment outcomes as measured on reduced states of
the target system of S1 and S2 as p(o1|m1, ω

t
1)

and p(o2|m2, ω
t
2), respectively. If the state is a

local product state then the probability for joint
outcomes, as measured on the composite system
of the two target subsystems in the initial state

ωt1,2, is factorisable, i.e., it can be expressed as

p(o1, o2|m1,m2, ω
t
1,2) = p(o1|m1, ω

t
1)·p(o2|m2, ω

t
2).

(18)
We experimentally performed a large set of mea-
surements on the input target states, and checked
for this property. The measurements we made
are tomographically complete in quantum the-
ory. Nevertheless, in a GPT this might not be
the case, as a GPT system may have more de-
grees of freedom than a quantum system. We
thus restrict our considerations to a class of GPTs
for which we assume that polarization measure-
ments in three unbiased bases for each photon
constitute a subset of the full set of “fiducial mea-
surements”. For example, in the case of GPTs
whose systems are described by Bloch vectors of
dimension d, three components of the vectors cor-
respond to “quantum fiducial measurements” of a
single system. Similarly, in the GPTs, the cor-
relation tensor is given by d2 elements of which
9 elements (i.e., 3 fiducial measurements for the
first times 3 fiducial measurements for the second
system) correspond to the “quantum subspace” of
the correlations that are accessible through quan-
tum measurements.

Our measurements confirm that the joint prob-
abilities for “quantum fiducial measurements” are
factorized for the two targets. In general, how-
ever, it might be possible that within the sub-
set of quantum fiducial measurements for a bi-
partite system the joint probabilities are factor-
ized into a product of marginal probabilities al-
though the overall state is not a product one.
This is because non-zero correlations could ex-
ist between non-quantum fiducial measurements.
It would then be possible to transfer correlations
from the “non-quantum subspace” into the corre-
lations within the “quantum subspace” by apply-
ing some “exotic” (i.e., non-quantum) local trans-
formations. Nevertheless, for our class of GPTs,
where subsystems are represented by Bloch vec-
tors of general dimension d and pure quantum
states are pure states of the GPTs, we know
that if both subsystems individually return prob-
ability one for some measurement outcome, the
state is a pure product one and it cannot vio-
late assumption I (Lemma 1 of Ref. [16]). More
precisely, the state would have the form ωt1,2 =
ωt1,2(ωt1, ωt2, ωt1(ωt2)T , ξt), with ωt1 and ωt2 being in
pure states, i.e., ||ωt1|| = ||ωt2|| = 1. In our ex-
periment, we obtain outcomes with probability
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one for a pair of quantum fiducial measurements
on the two target subsystems, and therefore the
two subsystems cannot exhibit any further corre-
lations within the non-quantum subspace.

Table S1 shows the values of the probabilities
p(o1, o2|m1,m2, ω

t
1,2) (which, for brevity, is in-

dicated as p1,2 in the Tables) in the first four
columns, and the marginal probability products
p(o1|m1, ω

t
1) · p(o2|m2, ω

t
2) (denoted as p1 · p2 in

the Table) in the last four columns, with almost
perfect correlations in the {H,V } basis. More-
over, the joint and the two marginal probabilities
are all almost one for the HH outcome, confirming
the high purity of the bipartite state. It can be
seen that the two sets of probabilities agree well.
More quantitatively, let us define the root-mean-
square (RMS) distance between the two sets of
probabilities as

d =
√√√√ 1
N

∑
o1,o2

∑
m1,m2

∆p2
o1,o2,m1,m2 , (19)

with

∆po1,o2,m1,m2 = p(o1, o2|m1,m2, ω
T
1,2)

− p(o1|m1, ω
T
1 ) · p(o2|m2, ω

T
2 ), (20)

and where N is the number of data points. Eval-
uating this over our results, we obtain a RMS
distance of (0.6± 2.7) · 10−2, indicating that the
two distributions are equal within error.

Although the two target systems are approxi-
mately in a product state, the small discrepancy
between the two distributions allows for some
correlations between the systems. Following the
Peres-Horodecki criterion [17, 42], the maximal
value of the CHSH inequality in quantum me-
chanics is given in terms of the two largest ab-
solute values of the correlation tensor singular
values, say t1 and t2, as 2

√
t21 + t22. From the

full set of the fiducial measurements in the quan-
tum subspace, we can estimate the maximal pos-
sible amount of violation of the CHSH inequal-
ity for the two target systems to be 2

√
t21 + t22 =

2.12 ± 0.04. This is more than ten standard de-
viations lower than the observed violation of the
inequality. Thus, this digression from assumption
I cannot explain the violation of the inequality.

E Entangled photon source

A periodically-poled potassium titanyl phosphate
(PPKTP) crystal, phase-matched for collinear
type-II spontaneous parametric down-conversion
(SPDC), converts one photon at 426 nm into
two photons at 852 nm. The photonic state af-
ter the crystal can be approximated to a Fock
state of two photons in two orthogonal polar-
ization modes |H, a〉|V, a〉, where a indicates the
common spatial mode of the two photons defined
in Fig. 3. Two PBSs are used to separate and
then recombine the two photons. Each photon
passes through a HWP set at ±45◦. The state
after the second PBS is therefore:

(
|H, b〉 |H, c〉−

|H, b〉 |V, b〉+|H, c〉 |V, c〉−|V, b〉 |V, c〉
)
/ 2, where b

and c indicate the two output spatial modes of the
second PBS. By post-selecting on coincidences,
only the part of the state with the photons in
two different spatial modes is kept, resulting in
the polarization-entangled state

(
|H, b〉|H, c〉 −

|V, b〉|V, c〉
)
/
√

2. We then use two PBSs and two
HWPs (Fig. 3) to convert this state into a path-
entangled state:

(
|0〉1 |0〉2−|1〉1 |1〉2

)
/
√

2, where
the notation is the same as specified in Fig. 3. A
trombone delay line in between the two PBSs is
used to compensate temporal delay between the
two photons, and a multi-order QWP in one mode
is tilted to compensate for undesired phases be-
tween the two components of the final quantum
state. The delay line and the QWP can be also
used to modify the final output state in a con-
trollable way. In particular, by unbalancing the
two paths by the coherence length of the down-
converted photons, the entangled state can be
converted into a statistical mixture of the states
|0〉1|0〉2 and |1〉1|1〉2.

For our experiment, both the path and the
polarization states of the photon pairs are im-
portant. To characterize the polarization state,
we can perform two-qubit polarization state to-
mography using a QWP, a HWP and a PBS for
each photon (Fig. 3, Panel a). To characterize
the path entanglement, we perform a Bell mea-
surement on the path qubits using the apparatus
shown in Fig. 3, Panel b, which essentially con-
sists of one Mach-Zehnder interferometer for each
photon. The phase of the interferometers sets the
measurement bases { 1√

2(|0〉+ e−iφi |1〉), 1√
2(|0〉 −

e−iφi |1〉)}. Using these two interferometers we
can measure all what is required for a CHSH pa-
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Figure 3 Entangled photon-pair source. a) The source — The beam from a Toptica DL Pro HP 426 laser is
focused on a 30-mm-long PPKTP crystal, phase-matched for degenerate collinear type-II SPDC from 426 nm to 852
nm. The phase-matching is finely tuned by controlling the temperature of the crystal with a precision greater than
0.01K. The emitted photons have a bandwidth of approximately 0.2 nm. After the crystal, the residual pump beam is
filtered, the photons are then collimated and sent to a set-up to create entanglement by post-selection (as explained in
the main text). The entanglement is first produced in polarization and then converted into path using polarizing beam
splitters. The source produces ≈ 30.000 path-entangled photon pairs per second with a pump power of 8 mW. b) Set-up
used to measure a Bell Inequality on the path qubits — The two paths composing each qubit are interfered on a beam
splitter (BS) projecting each qubit onto a basis on the equator of the Bloch sphere (see main text for more details).

rameter:

S =
∣∣∣C(o1, o2) + C(o′1, o2)

+ C(o1, o
′
2)− C(o′1, o′2)

∣∣∣, (21)

where

C(o1, o2) = N++ −N+− −N−+ +N−−
N++ +N+− +N−+ +N−−

. (22)

Here, N++ is the number of coincidence events
between detectors labelled + for each photon in
Fig. 3, Panel b, N+− the number of coincidence
events between detectors + and − for each pho-
ton, and so on.

Fig. 4 shows the characterization of the entan-
glement of the joint input control state, where we
verified the initial entanglement by performing a
Bell measurement on the joint control system be-
fore the quantum-switch, obtaining a CHSH pa-
rameter of 2.58± 0.09.

F Experimental proof that IIb does not
hold in GPTs under the assumption of III
In this section, we experimentally prove that the
form of violation IIb does not hold for the case
in which assumption III holds. Form of viola-
tion IIb states that the laboratory operations may
couple (i.e., may generate non-local correlations
between) the control and the target subsystems,
within a given party Si, i = 1, 2. To test it, we
first prepare the control and target subsystems in
a tomographically-complete set of product states
within quantum theory, i.e.,

p(oc, ot|mc,mt, ωi = ωcωt)

= p(oc|mc, ωc) · p(ot|mtωt) (23)

for all states ωi = ωc ωt from a tomographically-
complete set of product states. In the GPTs,
Eq. (23) shows that, for a product state from the
quantum subspace, the probability for a joint out-
come factorizes into the product of the probabili-
ties for individual outcomes. We then set a single
quantum-switch to have only one operation in-
serted, either UiA or UiB . We finally verify that,
for the full set of preparations, the control and
target subsystems are still in a product state af-
ter the quantum-switch, when this contains only
UiA or only UiB . More precisely, we verify that

p(oc, ot|mc,mt, UiAωi)
= p(oc|mc, UiAωc) p(ot|mt, UiAωt), (24a)

p(oc, ot|mc,mt, UiBωi)
= p(oc|mc, UiBωc) p(ot|mt, UiBωt), (24b)

for any state from a complete set of product
states, and by linear extension to an arbitrary
product state ωi. We do this using the same tech-
nique we used to verify that the target qubits be-
gan in an input state (Appendix D). Finally, we
make use of the following property: if neither op-
eration UiA nor UiB alone couple the two subsys-
tems, then also a sequence of the two operations
cannot couple them as long as they are performed
in a definite causal order. This conclusion follows
directly from Eqs. (23)-(24b):

p(oc, ot|mc,mt, UiB ◦ UiAωi) = (25)
p(oc|mc, UiB ◦ UiAωc) p(ot|mt, UiB ◦ UiAωt).

Note that even under a multiple usage of UiA and
UiB there can be no coupling when the operations
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Figure 4 Input control state characterization:
Bell measurement on the order qubits. Each curve
is a measurement of a Bell correlation term
C
(
O1(φ1),O2(φ2)

)
on the control qubits, wherein the

phase of φ1 is fixed, and the phase φ2 is scanned. As
described in Eq. (21) of Appendix E, we test the
Clauser-Horne-Shimony-Holt (CHSH) inequality [15]
achieving a violation of 2.59± 0.09. For the data in the
green curve, the phase φ1 was nominally shifted by π/4
rad with respect to the blue curve. The red shaded areas
represent the regions where values of φ1 and φ2
correspond with those used to construct our CHSH
parameter (Eq. (21) of Appendix E). In particular,
O = (O1,O2) where Oi(φ1, φ2) = cos(φi)σx + cos(φi)σz.
These data confirm that the two photons start in a
path-entangled state, and the polarization state is
initially separable.

are performed in a definite causal order. This
finalizes the proof of assumption IIb.

Tables S2-S3 report the values of the probabil-
ities p(oc, ot|mc,mt, ω1) (which, for brevity, are
indicated as pc,t in the Tables) compared with
the marginal probability products p(oc|mc, ω

c
1) ·

p(ot|mt, ω
t
1) (denoted as pc · pt in the Tables).

The tomographically-complete sets of fiducial
quantum measurements reported in Tables S2-
S3 were performed as follows. In order to vary
the input state of the control system among |+〉c,
|−〉c, |R〉c =

(
|0〉c − i |1〉c

)
/
√

2, and |L〉c =(
|0〉c + i |1〉c

)
/
√

2, we set the relative phase be-
tween the two trajectories after the first beam-
splitter by means of a delay stage mounted on
a calibrated piezo-actuator. Instead, by block-
ing either path, we prepared |0〉c and |1〉c. Like-
wise, we measure the path qubit in the following
way. To measure in {|+〉c , |−〉c}, or {|R〉c , |L〉c},
we suitably set the relative phase between the

two paths before recombining them at the sec-
ond beamsplitter. This can be done by adding
the required phase for state preparation and sub-
tracting the phase for state measurement. Such
a phase is then converted into a path delay and
sent to the piezo-actuated delay stage. (We use
the same delay stage to both set the phase of the
path state, and to measure it in {|+〉c , |−〉c}, or
{|R〉c , |L〉c}.) To measure in the {|0〉 , |1〉} basis,
we block either path before the 50/50 beamsplit-
ter, and we then sum the counts from the two
paths after the beamsplitter.

The displayed output probabilities
p(oc, ot|mc,mt, ω1) are very close to those corre-
sponding to a product state. This is indicated by
the fact that the RMS distance [Eq. (19)] between
these two sets of probabilities (the measured
joint probabilities p(oc, ot|mc,mt, ω1), and that
given by the product p(oc|mc, ω

c
1) · p(ot|mt, ω

t
1))

is (2 ± 3) · 10−2 when only operation UiA was
acting on the system, and (3 ± 3) · 10−2 when
only operation UiB was present. Moreover, the
displayed output probabilities p(oc, ot|mc,mt, ω1)
are very close to those of a pure (product) state,
which means that there cannot be any corre-
lations in the non-quantum subspace. More
precisely, the non-vanishing discrepancy between
the two probability distributions could be caused
by a weak coupling between the control and
the target system. Using the same technique
as in Appendix D, we can estimate that the
correlations established through this coupling
are too weak to violate the CHSH inequality
(2
√
t21 + t22 = 1.76± 0.04). The coupling between

each pair of the control and the target systems
can “swap” the correlations from the bipartite
state of the control system to that of the target
system. However, assuming that the transferred
amount of correlations to the target system
cannot be larger that the amount produced
through the coupling between each pair of the
target and control system, we conclude that
the coupling cannot result in the target systems
violating the Bell’s inequality.

This confirms within experimental error, under
the hypothesis that assumption III is valid, that
the form of violation IIb does not occur in our ex-
periment. Furthermore, this proof holds not only
within quantum theory but also for our class of
GPTs. In other words, our measurements imply
that in both of the two quantum-switches, indi-
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vidually, the laboratory operations do not couple
the target and the control subsystems in GPTs
when these operations are executed in a definite
causal order. From this experimental test, we
thus conclude that in our experiment assumption
II cannot be false unless assumption III is also
violated.

G Experimental Tests assuming a
Quantum Mechanical Description
Although our results are not based on the as-
sumption of a quantum description of the experi-
ment, below we report the analysis of the results
of our experiment within this description for com-
pleteness.

G.1 Entanglement of the output target state
In this subsection, we report the results of the
polarization-state tomography on the two-qubit
output target state after the quantum-switches.
The resulting density matrix is presented in
Fig. 5, and it shows a clear presence of entan-
glement. The reconstructed state has a fidelity of
0.922 ± 0.005 with the ideal one [Eq. (6)], and a
concurrence of 0.95± 0.01.

a) b)

Figure 5 Output state characterization. Panels a
and b show the real and imaginary parts, respectively, of
the two-photon polarization state measured after the
photons leave the quantum-switches. For the data shown
here, the two control qubits were found to be in the same
state (either |+〉c1 |+〉

c
2 or |−〉c1 |−〉

c
2). This state has a

fidelity of 0.922± 0.005 with the target state
(|HV 〉+ |V H〉)/

√
2, and a concurrence of 0.95± 0.01.

Performing a Bell measurement directly using this state
results in a CHSH parameter of 2.55± 0.08.

G.2 Verification of assumption I
Within quantum theory, one can show the va-
lidity of assumption I by demonstrating that the
state is separable; this can be done using quan-
tum state tomography, for example. To this end,

Figure 6 Input control state characterization:
State tomography of the target qubits. The real
(Panel a) and imaginary (Panel b) parts of the
two-photon polarization state are measured before the
two photons enter the quantum-switches. This state has
a fidelity 0.935± 0.004 with the ideal state |HH〉, and a
concurrence of 0.001± 0.010.

we performed tomography on the target states
before the quantum-switches. The resulting den-
sity matrix is shown in Fig. 6, Panels a and b.
For our experiment, the target state was nomi-
nally prepared in |HH〉; our measured state has
a fidelity of 0.935 ± 0.004 with |HH〉. Further-
more, the concurrence of the estimated state is
0.001± 0.010, indicating that, within experimen-
tal error, the initial target state is separable,
in agreement with assumption I. The error bars
are computed using a Monte Carlo simulation of
our experiment; the dominant contribution comes
from errors in setting the WPs, and cross-talk in
the polarizing BSs.

H Data analysis

In order to convert the coincidence counts into
probabilities, we weight each measured count rate
by the net detection efficiency of the correspond-
ing detector pair. We estimate these efficiencies
in two parts. First, we measure the relative cou-
pling efficiencies between the output ports M1
and M2 of quantum-switch S1, and M3 and M4
of quantum-switch S2. Then, within each output
port, we measure the relative efficiency of the de-
tector in the transmitted port and the reflected
port. We find relative efficiencies between ≈ 0.85
and 1. For more details, see the Methods of our
previous work [40].

The main source of error in our experiment
was phase fluctuations. In the Bell measure-
ment, this dephasing is mainly due to two con-
tributions. (1) Undesired phase-shifts in the in-
terferometer (which we estimated to be about
0.97◦ ± 0.02◦). (2) Fluctuations of the source,
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which produces time varying phase between the
|HH〉 and |V V 〉 terms. In our source, we esti-
mate this to be approximately 1.9◦ ± 0.1◦, which
is caused by a combination of fluctuations in the
pump laser wavelength, and the phase-matching
temperature. We convert these errors into an
error in the Bell parameter using Gaussian er-
ror propagation. To calculate the error for the
Bell measurements on the polarization qubits af-
ter the quantum-switches, we consider the same
error sources as above (where now the phase shifts
in the measurement interferometer are replaced
by phase shifts in the quantum-switches). How-
ever, we also consider errors arising from setting
the polarization measurements. Finally, to esti-
mate the errors in the results extracted from to-
mography (i.e., fidelity and concurrence), we per-
formed a Monte Carlo simulation considering the
phase fluctuations discussed above.

I Additional consistency tests: the in-
sertion of noise

In this section, we present two further tests of
consistency of our experimental proof.

First, we decreased the entanglement of the
joint control system by increasing the delay of
the interferometer inside the source (see Ap-
pendix E). The more mixed the state of the con-
trol system becomes, the smaller is the amount of
violation of a Bell inequality with the target sys-
tems which we can achieve, up until reaching the
threshold of non-violation. The Bell parameter
versus the “source visibility” (i.e., the two-photon
visibility in its anti-correlated basis) is plotted in
Fig. 7a. The dashed line is a calculation of the
expected Bell parameter, including the imperfect
visibility of the two interferometers. All the data
points agree with the expected trend within er-
ror. The small step at an entanglement visibility
of around 0.5 was caused by a lower fringe visibil-
ity which increased the systematic error in setting
the phases φ1 and φ1 + π/4 (see Fig. 6).

As a second test, we decreased the degree of
causal non-separability of the two processes. To
do this, we introduced distinguishing information
between the paths corresponding to the orders
UiA � UiB and UiB � UiA (in only one quantum-
switch, squares in Fig. 7b, and in both simul-
taneously, circles in Fig. 7b) by lengthening one
of the paths with respect to the other, effectively

reducing the visibility of the interferometers com-
prising the quantum-switches. As this occurs, we
transition from a superposition of temporal or-
ders to a mixture of them (in other words, to
a causally-separable process, which satisfies as-
sumption III). If all three assumptions are met,
one cannot violate a Bell inequality between the
two systems. Indeed, we experimentally observe
that as the visibility is decreased, the Bell param-
eter also decreases (Fig. 7, Panel b).
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Supplementary Information

I. Quantum-switch and causal inequalities

The quantum-switch [36, 40] has been shown not to violate causal inequalities, making it impossible
to use such a violation as a theory-independent proof that the causal order of the operations in the
quantum-switch is indefinite. Here, we briefly re-examine such reasoning following Refs. [5, 34].

We introduce the x, y and z indices to refer, respectively, to the measurements choices of Alice, Bob
and Charlie. We call a, b and c their respective measurement results. It is always possible to re-write
p(a, b, c|x, y, z) as

pswitch(a, b, c|x, y, z) = p(c|a, b, x, y, z) p(a, b|x, y, z). (26)

It should be noticed that, regardless of the causal order between operations in Alice’s and Bob’s
laboratory, the operation in Charlie’s laboratory always occurs after them. In other words, his operation
is in the future light cone of both Alice’s and Bob’s operations. Thus, a and b cannot depend on z, so

p(a, b|x, y, z) = p(a, b|x, y). (27)

As previously observed, after tracing out Charlie’s laboratory in the quantum-switch, the process of
Alice and Bob is causally separable. Thus, one can rewrite p(a, b|x, y) in the form of a convex mixture,
obtaining

pswitch(a, b, c|x, y, z) = p(c|a, b, x, y, z)
[
ζ · pA�B(a, b|x, y) + (1− ζ) · pB�A(a, b|x, y)

]
, (28)

with ζ ≥ 0. We can combine the probabilities pA�B(a, b|x, y) (pB�A(a, b|x, y)) and p(c|a, b, x, y, z) as
a product of the probability respecting the order A � B (B � A) with the probability respecting the
order {A,B} � C

pswitch(a, b, c|x, y, z) = ζ · pA�B�C(a, b, c|x, y, z) + (1− ζ) · pB�A�C(a, b, c|x, y, z). (29)

Therefore, the quantum-switch is a process whose probabilities have a “causal model”, i.e., it can always
be understood as arising from events that are causally ordered, or from a convex mixture of causally
ordered events. Thus, it satisfies all causal inequalities.

II. Hidden local definite causal order

In general, while experimental tests can be used to prove that the conjunction of the assumptions
underlying a given no-go theorem does not describe the phenomenology observed within quantum
mechanics, they do not provide information on which of the assumptions is to be discarded. In this
experiment, the application of the Bell’s theorem to temporal order allowed us to test a conjunction
of all our assumptions; yet, in order to verify which assumptions are valid, additional tests on a sin-
gle quantum-switch were necessary. This notwithstanding, it is worth noting that testing only one
single quantum-switch would not have provided an as stringent information. In fact, as we showed
above the experimental data taken from a single quantum-switch cannot violate causal inequalities,
and thus can be understood as arising from an underlying causal model, in the spirit of simulation of
quantum statistics by hidden variables. Such a model generates statistics compatible with operations
performed on a system in a definite order, or in a convex mixture therefrom. In terms of proba-
bilities, the statistics in the quantum-switch pswitch(a, b, c|x, y, z) =

∫
dλ ρ(λ) pcausal(a, b, c|x, y, z, λ),

where pcausal(a, b, c|x, y, z, λ) = pA4B4C(a, b, c|x, y, z) or pB4A4C(a, b, c|x, y, z) or a classical mixture
therefrom, could therefore be mimicked by an underlying causal hidden variable model. The statistics
obtained measuring the double quantum-switch with entangled temporal orders rules out a local causal
hidden variable model that allows for this description, i.e., its statistics is incompatible with

p2-switches(a1, b1, c1, a2, b2, c2|x1, y1, z1, x2, y2, z2) =
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=
∫
dλ ρ(λ) pcausal(a1, b1, c1|x1, y1, z1, λ) pcausal(a2, b2c2|x2, y2, z2, λ). (30)

In other words, the causal model is called “local” if the statistics is compatible with the assumptions
that: (a) the order of events in each of the laboratories is definite but may be correlated by a common
cause in the past, and (b) measurement choices may have only local influences. Our experimental data
rule out the models in Eq. (30) for the special case where Alice and Bob both apply a single operation
with a single outcome (unitary).

III. On the physical implementability of the quantum-switch
Skepticism has been expressed about whether a tabletop experiment can demonstrate indefinite causal
structures. In Ref. [29], the authors claim that it is not possible to implement the quantum-switch
without “exotic physical scenarios”. In particular, they argue that one would need a closed time-like
curve, and even then such an implementation would be inconsistent, being able to generate logical
contradictions such as the grandfather paradox. These criticisms are based on the assumption that
causal structures must be represented via directed graphs. In this representation, the quantum-switch
becomes a directed graph with a cycle, which could indeed be inconsistent and could generate logical
contradictions.

The tension between directed acyclic graphs (DAG) and causal structures in the quantum-switch
is akin to the tension between classical “hidden” variable theories and quantum theory. For example,
in order to describe an interferometric experiment in terms of classical variables, one is forced to say
that the interfering system follows some exotic trajectories or in some non-local manner follows two
classical trajectories “at once.” However, within quantum theory one interprets interferometric tests
as demonstrating that the very assumption that a system does follow a definite path is violated.

The formal sense in which the causal order of applying operations in a quantum-switch is non-
classical has been recently studied in Ref. [33]. The motivation of that work was to understand where
and when the operations happen in the quantum-switch, which is precisely the question brought up in
the context of a DAG representation. The author shows that the operations applied on systems in a
quantum-switch act on subsystems that are not localised in time, i.e., on ‘time-delocalised’ subsystems.
It is further shown that standard quantum theory, without exotic closed timelike-curves, is compatible
with such time-delocalised operations and that they indeed realise genuine non-separable quantum
processes. The work also concludes that experimental realisations of the quantum-switch, including
specifically its entangled version described in this work, are genuine realisations of such time-delocalised
processes. In other words, there is a well-defined fashion in which temporal relations between the
application of operations in a quantum-switch cannot be represented with DAGs. In fact, the Bell
theorem for temporal order [43] and its version in this work can be interpreted as a limitation on
achievable correlations when operations acting on a quantum system can be embedded in a causal
structure compatible with an underlying DAG (or a probabilistic mixture thereof).

Therefore, the suitable conclusion to draw is that the causal structure in the quantum-switch cannot
be represented by a DAG since the latter can only represent what are called definite causal struc-
tures [32]. What our work demonstrates experimentally is that the quantum-switch represents an
indefinite causal structure incompatible with any DAG, just like experimental violations of Bell’s in-
equalities show that there exist correlations incompatible with local hidden variables.

The authors of Ref. [29] further argue that, in a genuine quantum-switch, operations must be per-
formed in the same spatio-temporal regions in each term of the superposition, so that only their order
is swapped. As mentioned above, Ref. [33] showed that this is not necessary: in the quantum-switch a
single operation can be “time-delocalised” over two (or more) spatio-temporal regions. In the originally
proposed implementation of the quantum-switch [14], as well as in ours, one could in principle register
the time at which the signal passes through each box, which would decohere the superposition and make
the interference between the causal orders vanish. However, since we do observe coherence, such infor-
mation does not exists (i.e., it is not stored in any physical degree of freedom, as this would alter the
results of the experiment). The above requirement of “the same spatio-temporal regions” whose order
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is simply swapped is in principle realisable in a gravitational implementation of the quantum-switch
for a certain choice of coordinates. There, a massive object is prepared in a spatial superposition,
which results in the causal order between two events being opposite in the two superposed terms.
More precisely, a choice of coordinates can be found such that gate A is performed at a single time
(the proper time of a local clock). However, an alternative choice of coordinates may as well be done
such that the gate A is performed in a superposition of different times (according to the coordinate
time or the time of a distant observer) in different superposed terms, before and after the gate B.
Therefore, even in this gravitational case, it is always possible to make a choice of coordinates where
the operations appear to be performed at different times in the different superposed terms. Thus,
it is in fact insubstantial to argue whether the operations are “really performed at the same times,
and their order is swapped”, or they are “merely performed in superposition of different times”, as this
depends on the choice of coordinates in which one wishes to describe the scenario (see [3, 43] for further
discussions). Furthermore, note that, contrary to the arguments of [29], this proposal does not allow
for the information to travel back in time, nor does it require closed time-like curves, and it does not
give rise to any logical paradoxes.

In Ref. [29], another criticism follows from the observation that the quantum-switch can easily be
“simulated” by using additional copies of the boxes A and B, as was already noted in the original
proposal of the quantum-switch [14]. In particular, one could use an unfolded Mach-Zehnder inter-
ferometer, with gates A1 and B1 in one arm and gates B2 and A2 on the other. The straightforward
response is that we do not use an unfolded Mach-Zehnder interferometer, but rather a folded one, and
therefore that we use a single copy of each box instead of two. The number of applications of a box can
operationally be determined by a counter (i.e., a “flag”) that is raised each time the operation is applied
on the system. The very fact that an unfolded Mach-Zehnder interferometer requires two copies of
each box to “simulate” the statistics of a folded one is a signature that the latter exhibits an indefinite
causal order. Moreover, we also note that, in the unfolded version of the interferometer, it would be
necessary to actively make A1 precisely equivalent to A2, whereas in our case this clearly follows from
the implementation itself, as the gates are physically the same. It should also be emphasized that the
present Bell-type proof of an indefinite causal order is valid even if the local gates are used more than
once, as clarified in the main text.

Furthermore, following the reasoning in Ref. [29], one could say that it is in principle possible to
make the gate A (B) act differently when it comes before or after B (A), as in each case the photon
passes through A (B) at different times. This is true, but also applies to the originally proposed
implementation. To make it locally impossible, one could use the above mentioned superposition of a
massive object to control the order of operations in two space-time regions. In such a scenario, indeed,
Alice (Bob) in her (his) local laboratory cannot make the gateA (B) act differently in case the operation
A (B) is performed before or after B (A). Nevertheless, a distant observer for whom Alice’s (Bob’s)
operation happens in a superposition of two coordinate-times could make such contingency occur with
a cleverly designed set-up (e.g., by sending a signal which triggers Alice’s operation to change once it
is received, as depicted in Fig. 1). As a consequence, as much as in the case of a table-top experiment
the operation A can be made to act differently depending on whether it happens before or after B,
in its gravitational counterpart this can be achieved by a distant observer who triggers some change
for certain time-coordinates. In conclusion, the requirement that operations A and B must even in
principle be forbidden to change depending on the order has no absolute meaning (i.e., it cannot be
realized in all reference frames). Moreover, if the operations differed or their time was revealed (or
stored in any degree of freedom), the results of the experiment would differ.

Finally, because of the differences highlighted above, one may object that the physics that describes a
photonic quantum-switch is not equivalent to the one which is behind the gravitational quantum-switch
for all possible observers. This is indeed correct. In fact, in the first case, the physics is described by
Maxwell equations on Minkowski space-time, whereas in the latter case it is non-classical space-time
that determines the dynamics. However, although a local as well as a global observer could tell the
difference between the gravitational and the photonic quantum-switch, it is not the case for a quantum
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particle which travels along the two superposed paths in either versions of the quantum-switch. In
fact, in both cases the particle experiences a genuine quantum superposition of causal orders. And
this is precisely the purpose of this experimental work: we do not aim to draw conclusions concerning
global/local observers, but on the system undergoing the quantum process. Therefore, neither of the
schemes (i.e., the gravitational and the photonic quantum-switch) is a “simulation” of one another.
They are rather two equivalent representations of the dynamics experienced by a quantum particle in
presence of a quantum superposition of causal orders, i.e., two representations of a quantum-switch.

S 1 Schematic of a gravitational quantum-switch. A quantum system is exchanged between Alice’s and Bob’s
laboratories. The order in which such “target” system is exchanged is governed by a second system, a “control” system,
which is encoded in the position of a massive object. By putting the massive object in a macroscopic superposition of
two positions, one closer to Alice’s and the other closer to Bob’s position, one induces a relative time dilation between
Alice’s and Bob’s laboratories. If an outside observer sends some system at a suitably chosen time, let us call it tA�B ,
the observer could influence the functioning of the device that implements A, e.g., when it acts second but not when it
acts first, making the operation of Alice act different depending on the order.
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S 1 Comparison between the two-states probabilities p(o1, o2|m1,m2, ω
t
1,2) and the products of

marginal single-state probabilities p(o1|m1, ω
t
1) · p(o2|m2, ω

t
2) for the input target states. - Part I.

The compatibility between the two sets of probabilities shows the separability of the input target state ωt
1,2.

We indicate with H and V the states of horizontal and vertical polarization, with D and A the diagonal and
anti-diagonal states, with R and L the circular polarization states right- and left-handed. The experimental
error associated to each of these probabilities is ±0.01.

Measur. Basis p1,2 p1,2⊥ p1⊥,2 p1⊥,2⊥ p1 · p2 p1 · p2⊥ p1⊥ · p2 p1⊥ · p2⊥

H, H 0.97 0.03 0.00 0.00 0.97 0.03 0.00 0.00
H, V 0.01 0.99 0.00 0.00 0.01 0.99 0.00 0.00
H, A 0.58 0.41 0.00 0.00 0.59 0.41 0.00 0.00
H, D 0.42 0.58 0.00 0.00 0.42 0.58 0.00 0.00
H, R 0.39 0.61 0.00 0.00 0.39 0.61 0.00 0.00
H, L 0.61 0.38 0.00 0.00 0.62 0.38 0.00 0.00
V, H 0.00 0.00 0.96 0.04 0.00 0.00 0.96 0.04
V, V 0.00 0.00 0.03 0.97 0.00 0.00 0.03 0.97
V, A 0.00 0.00 0.61 0.39 0.00 0.00 0.61 0.39
V, D 0.00 0.00 0.38 0.61 0.00 0.00 0.38 0.61
V, R 0.00 0.00 0.35 0.64 0.00 0.00 0.35 0.64
V, L 0.00 0.00 0.64 0.36 0.00 0.00 0.64 0.36
A, H 0.39 0.01 0.53 0.02 0.41 0.01 0.54 0.02
A, V 0.01 0.37 0.02 0.54 0.02 0.39 0.02 0.54
A, A 0.24 0.16 0.34 0.21 0.26 0.16 0.34 0.21
A, D 0.18 0.22 0.21 0.33 0.18 0.24 0.23 0.31
A, R 0.16 0.25 0.18 0.35 0.16 0.27 0.19 0.34
A, L 0.26 0.14 0.36 0.19 0.27 0.14 0.36 0.19
D, H 0.55 0.02 0.45 0.02 0.53 0.02 0.45 0.02
D, V 0.01 0.57 0.02 0.45 0.01 0.54 0.01 0.46
D, A 0.32 0.26 0.29 0.18 0.32 0.24 0.28 0.20
D, D 0.23 0.35 0.18 0.29 0.22 0.34 0.18 0.29
D, R 0.21 0.37 0.16 0.31 0.19 0.37 0.16 0.31
D, L 0.35 0.22 0.32 0.17 0.34 0.20 0.31 0.18
R, H 0.65 0.02 0.33 0.01 0.64 0.02 0.33 0.01
R, V 0.01 0.66 0.01 0.30 0.02 0.66 0.01 0.31
R, A 0.39 0.27 0.22 0.13 0.40 0.26 0.21 0.14
R, D 0.29 0.39 0.12 0.19 0.28 0.40 0.13 0.19
R, R 0.27 0.41 0.11 0.20 0.26 0.42 0.12 0.19
R, L 0.41 0.25 0.22 0.12 0.41 0.24 0.22 0.13
L, H 0.32 0.01 0.63 0.04 0.32 0.02 0.63 0.03
L, V 0.01 0.32 0.03 0.64 0.01 0.32 0.02 0.65
L, A 0.18 0.14 0.42 0.27 0.19 0.13 0.41 0.28
L, D 0.14 0.21 0.23 0.41 0.13 0.22 0.24 0.40
L, R 0.12 0.23 0.22 0.43 0.12 0.23 0.22 0.43
L, L 0.21 0.12 0.44 0.24 0.21 0.12 0.43 0.25
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S 2 Comparison between the two-states probabilities p(oc, ot|mc,mt, ω1) and the products of
marginal single-state probabilities p(oc|mc, ω

c
1) · p(ot|mt, ω

t
1) for the control and the target states

when only operation UiA
is acting on the input state. We denoted as 0, 1, +, −, l and r the analogue

of the polarization states H, V, D, A, L, R in the path degree of freedom. The two sets of probabilities
associated to the control and the target states in output are compatible within experimental errors. The
experimental error associated to each of these probabilities is ±0.01.

Meas. Basis Prep.-Meas. pc,t pc,t⊥ pc⊥,t pc⊥,t⊥ pc · pt pc · pt⊥ pc⊥ · pt pc⊥ · pt⊥
(target) Basis (control)

H + 0.95 0.00 0.04 0.00 0.95 0.00 0.04 0.00
D + 0.47 0.48 0.01 0.03 0.47 0.49 0.02 0.02
R + 0.48 0.47 0.01 0.03 0.47 0.48 0.02 0.02
H − 0.07 0.00 0.92 0.01 0.07 0.00 0.91 0.01
D − 0.04 0.04 0.48 0.44 0.04 0.04 0.48 0.44
R − 0.04 0.04 0.41 0.51 0.04 0.04 0.41 0.51
H r 0.55 0.00 0.44 0.01 0.55 0.01 0.44 0.00
D r 0.20 0.26 0.28 0.26 0.22 0.24 0.26 0.28
R r 0.28 0.24 0.18 0.30 0.24 0.28 0.22 0.26
H l 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00
D l 0.30 0.28 0.21 0.21 0.30 0.28 0.22 0.21
R l 0.27 0.30 0.20 0.23 0.27 0.30 0.20 0.23
H 0 0.51 0.00 0.49 0.00 0.50 0.00 0.49 0.00
D 0 0.26 0.30 0.26 0.17 0.30 0.27 0.23 0.21
R 0 0.28 0.26 0.23 0.23 0.27 0.26 0.24 0.23
H 1 0.56 0.00 0.43 0.01 0.56 0.00 0.44 0.00
D 1 0.27 0.29 0.22 0.23 0.27 0.29 0.21 0.23
R 1 0.28 0.28 0.17 0.27 0.25 0.31 0.20 0.24
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S 3 Comparison between the two-states probabilities p(oc, ot|mc,mt, ω1) and the products of
marginal single-state probabilities p(oc|mc, ω

c
1) · p(ot|mt, ω

t
1) for the control and the target states

when only operation UiB
is acting on the input state. The two sets of probabilities associated to the

control and the target states in output are compatible within experimental errors. The experimental error
associated to each of these probabilities is ±0.01.

Meas. Basis Prep.-Meas. pc,t pc,t⊥ pc⊥,t pc⊥,t⊥ pc · pt pc · pt⊥ pc⊥ · pt pc⊥ · pt⊥
(target) Basis (control)

H + 0.47 0.33 0.11 0.09 0.47 0.33 0.12 0.08
D + 0.50 0.27 0.18 0.06 0.51 0.25 0.16 0.08
R + 0.75 0.02 0.23 0.01 0.75 0.02 0.23 0.00
H − 0.11 0.15 0.49 0.25 0.16 0.11 0.44 0.29
D − 0.12 0.12 0.60 0.16 0.17 0.07 0.55 0.21
R − 0.25 0.01 0.67 0.07 0.24 0.02 0.68 0.06
H r 0.43 0.44 0.10 0.03 0.46 0.41 0.07 0.06
D r 0.54 0.32 0.09 0.05 0.54 0.32 0.09 0.05
R r 0.86 0.01 0.11 0.02 0.84 0.03 0.13 0.00
H l 0.16 0.06 0.49 0.29 0.14 0.08 0.51 0.27
D l 0.13 0.09 0.62 0.15 0.17 0.05 0.59 0.19
R l 0.20 0.01 0.73 0.05 0.20 0.01 0.73 0.05
H 0 0.26 0.28 0.26 0.19 0.29 0.26 0.24 0.22
D 0 0.40 0.14 0.41 0.05 0.44 0.10 0.37 0.09
R 0 0.48 0.04 0.42 0.06 0.47 0.05 0.44 0.05
H 1 0.32 0.23 0.29 0.15 0.34 0.22 0.27 0.17
D 1 0.32 0.24 0.32 0.12 0.36 0.20 0.28 0.16
R 1 0.56 0.00 0.41 0.03 0.54 0.02 0.43 0.01

Accepted in Quantum 2021-12-27, click title to verify. Published under CC-BY 4.0. 29


	1 Introduction
	2 No-go theorem for definite temporal order
	3 Entangled quantum-switch
	3.1 Experimental scheme

	4 Results
	4.1 Violation of the no-go theorem
	4.2 Verification of assumption I
	4.3 Verification of assumption II
	4.4 Implications for the temporal order

	5 Discussion
	A Proof of no-go theorem for temporal order
	B Device-independency and theory-independency
	C Relation between the present work and Ref. mag
	D Experimental proof of assumption I in GPTs
	E Entangled photon source
	F Experimental proof that IIb does not hold in GPTs under the assumption of III
	G Experimental Tests assuming a Quantum Mechanical Description
	G.1 Entanglement of the output target state
	G.2 Verification of assumption I

	H Data analysis
	I Additional consistency tests: the insertion of noise
	 References
	 Supplementary Information
	 I. Quantum-switch and causal inequalities
	 II. Hidden local definite causal order
	 III. On the physical implementability of the quantum-switch


