208 research outputs found

    Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy

    Get PDF
    Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches

    Nickel(II) 3,4;9,10-Perylenediimide bis-Phosphonate Pentahydrate: A Metal−Organic Ferromagnetic Dye

    Get PDF
    The new metal−organic compound nickel(II) 3,4;9,10- perylenediimide bis-phosphonate pentahydrate, i.e. Ni2[(PDI-BP)- (H2O)2]·3H2O (1), has been synthesized and its structural and magnetic properties have been studied. Reaction of 3,4;9,10-perylenediimide bisphosphonate (PDI-BP, hereafter) ligand and nickel chloride in water resulted in the precipitation of a red and poorly crystalline solid (1). As the solid shows a poor crystalline organization of aggregates, the energy dispersive X-ray diffraction analysis (EDXD) technique has been used to obtain short-range order structural information of the single nanoaggregates by radial distribution function analysis. The overall structure of the compound is characterized by layers containing perylene planes shifted in the direction perpendicular to the stacking axes in such a way that only the outer rings overlap. The edges of the perylene planes are connected to the phosphonate groups through an imido group. The oxygen atoms of the [−PO3]2‑ group and those of the water molecules are bonded to the nickel ions resulting in a [NiO6] octahedral coordination sphere. The Ni−O bond lengths are 0.21 ± 0.08 nm and the Ni−O−Ni angles of aligned moieties are 95 ± 2°. The oxygen atoms of the water molecules and the nickel atoms are nearly planar and almost perpendicular to the perylene planes forming chains of edge-sharing octahedra. The magnetic properties of (1) show the presence of intrachain ferromagnetic Ni−Ni interactions and a long-range ferromagnetic order below 21 K with a canting angle and with a spin glasslike behavior due to disorder in the inorganic layer. Hysteresis cycles show a coercive field of ca. 272 mT at 2 K that decreases as the temperature is increased and vanishes at ca. 20 K

    Gold nanoparticles on nanodiamond for nanophotonic applications

    Get PDF
    We present here some recent results of a research focused on the prepn. of detonation nanodiamond/Au nanoparticles hybrid materials. Two different exptl. routes are followed for the decoration of diamond nanoparticles by Au nanoparticles, that are in turn prepd. by an innovative electroless approach. Structure and morphol. at the nanoscale level of the Au-on-nanodiamond deposits have been deeply investigated by electron microscopy (FE-SEM, HR-TEM) and diffraction (XRD) techniques. Optical properties of these systems have been detd. by performing scattering and UV-Vis absorption measurements, and by comparing the exptl. data with simulated extinction spectra. The results highlighted very interesting plasmonic and scattering behaviors, mainly related to the high refractive index of diamond

    First-in-man craniectomy and asportation of solitary cerebellar metastasis in COVID-19 patient: A case report

    Get PDF
    Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has an impact on the delivery of neurosurgical care, and it is changing the perioperative practice worldwide. We present the first case in the literature of craniectomy procedure and asportation of a solitary cerebellar metastasis of the oesophagus squamous carcinoma in a 77 years old woman COVID-19 positive. In these particular circumstances, we show that adequate healthcare resources and risk assessments are essential in the management of COVID-19 patients referred to emergency surgery. Presentation of case: The case here presented was treated in 2019 for squamous carcinoma of the oesophagus. In April 2020, she presented a deterioration of her clinical picture consisting of dysphagia, abdominal pain, hyposthenia and ataxia. A Head CT scan was performed, which showed the presence of a solitary cerebellar metastasis. Her associated SARS-CoV-2 positivity status represented the principal clinical concern throughout her hospitalisation. Discussion: The patient underwent a suboccipital craniectomy procedure with metastasis asportation. She tested positive for SARS-CoV-2 in the pre- and post-operative phases, but she was not admitted to the intensive care unit because she did not present any respiratory complications. Her vital parameters and inflammation indexes fell within the reference ranges, and she was kept in isolation for 16 days in our neurosurgical unit following strict COVID-19 measures. She was asymptomatic and not treated for any of the specific and non-specific symptoms of COVID-19. Conclusion: This is the first case reported of solitary cerebellar metastasis of oesophagus carcinoma operated on a COVID-19 positive patient. It shows that asymptomatic COVID-19 positive patients can undergo major emergency surgeries without the risk of infecting the operating team if adequate Personal Protection Equipment (PPE) is used. The patient remained asymptomatic and did not develop the disease's active phase despite undergoing a stressful event such as a major emergency neurosurgical procedure. In the current crisis, a prophylactic COVID-19 screening test can identify asymptomatic patients undergoing major emergency surgery and adequate resource planning and Personal Protective Equipment (PPE) for healthcare workers can minimise the effect of the COVID-19 pandemic

    Thrombin in the peripheral nervous system as regulator of Schwann cell neurotrophic potentials

    Get PDF
    Coagulation and inflammation are tightly and reciprocally regulated. Inflammation initiates clotting, decreases the activity of natural anticoagulant mechanisms and impairs the fibrinolytic system. Thrombin is the main effector protease in hemostasis and it also plays a role in various non-hemostatic biological and pathophysiologic processes, predominantly mediated through activation of protease-activated receptors (PARs)

    Nanocarbon surfaces for biomedicine

    Get PDF
    The distinctive physicochemical, mechanical and electrical properties of carbon nanostructures are currently gaining the interest of researchers working in bioengineering and biomedical fields. Carbon nanotubes, carbon dendrimers, graphenic platelets and nanodiamonds are deeply studied aiming at their application in several areas of biology and medicine. Here we provide a summary of the carbon nanomaterials prepared in our labs and of the fabrication techniques used to produce several biomedical utilities, from scaffolds for tissue growth to cargos for drug delivery and to biosensors

    Crucial role of androgen receptor in vascular H2S biosynthesis induced by testosterone.

    Get PDF
    BACKGROUND AND PURPOSE: Hydrogen sulphide (H2S) is a gaseous mediator strongly involved in cardiovascular homeostasis, where it provokes vasodilation. Having previously shown that H2S contributes to testosterone (T) induced vasorelaxation, here we aim to uncover the mechanisms underlying this effect. EXPERIMENTAL APPROACH: H2S biosynthesis was evaluated in rat isolated aorta rings following androgen receptor (AR) stimulation. Co-immunoprecipitation and surface plasmon resonance analysis have been performed to investigate mechanisms involved in AR activation. KEY RESULTS: H2S biosynthesis is associated to activation of AR by testosterone or androgen agonist mesterolone and blocked by AR antagonist nilutamide. This event is linked to AR-multicomplex-derived heath shock protein 90 (hsp90), since its specific inhibitor geldanamycin strongly reduced T-induced H2S production. Neither progesterone nor 17-ÎČ-oestradiol actions did account for H2S release. Furthermore, we found that cystathionine gamma lyase (CSE), the main vascular H2S-synthesizing enzyme, is physically associated to AR/hsp90 complex and the generation of such a ternary system represents a key event leading to CSE activation. Finally, H2S levels in human blood collected from male healthy volunteers were higher than those observed in female samples. CONCLUSIONS AND IMPLICATIONS: Here, we demonstrated that selective activation of the AR is essential for H2S biosynthesis within vascular tissue and this event is based on formation of a ternary complex among CSE, AR and hsp90. This novel molecular mechanism operating in vascular district, corroborated by higher H2S level in males, suggested that L-cysteine/CSE/H2S pathway may be preferentially activated in males leading to a gender-related H2S biosynthesis

    Hybrid Cnanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor

    Get PDF
    Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes

    Detonation nanodiamonds tailor the structural oeder of PEDOT chains in conductive coating layers of hybrid nanoparticles

    Get PDF
    Solid layers of PEDOT–detonation nanodiamond based nanoparticles with an exceptional structural order were produced by means of a template-free polymerization technique. As an efficient multifunctional filler, the nanocrystalline diamond has been shown to possess a high catalytic activity on the monomer polymerization rate as well as to play a fundamental role as a 3D arrangement-directing agent of the PEDOT chains at the micro- and nano-scale. SEM, TEM and TED analyses highlighted the mutual organization between PEDOT oligomers and nanodiamond grains, and the produced hierarchical effects on the arrangement of the backbones of the final polymer. Optical and Raman spectroscopy, used together with XRD diffraction to study the molecular structure and crystallographic features of the hybrid materials, pointed out that the adopted synthetic strategy enables highly conjugated and doped hybrid systems to be generated. The spatial distribution of the filler inside the polymeric matrix and the mutual connectivity of nanodiamond crystals and PEDOT segments are found to strongly improve the functional properties of the host polymer. Mechanical characterizations by advanced AFM-based techniques revealed that both indentation modulus and hardness of PEDOT/nanodiamond materials are 3 times higher than the pure PEDOT polymer, while electrical characterizations by a 4-probe method gave sheet resistance values of 1 106 U sq 1 for the nanocomposite particle

    Morpho-chemical observations of human deciduous teeth enamel in response to biomimetic toothpastes treatment

    Get PDF
    Today, biomaterial research on biomimetic mineralization strategies represents a new challenge in the prevention and cure of enamel mineral loss on delicate deciduous teeth. Distinctive assumptions about the origin, the growth, and the functionalization on the biomimetic materials have been recently proposed by scientific research studies in evaluating the different clinical aspects of treating the deciduous tooth. Therefore, appropriate morpho-chemical observations on delivering specific biomaterials to enamel teeth is the most important factor for controlling biomineralization processes. Detailed morpho-chemical investigations of the treated enamel layer using three commercial toothpastes (Biorepair, F1400, and F500) were performed through variable pressure scanning electron microscopy (VP-SEM) and energy dispersive X-ray spectroscopy (EDS) on deciduous teeth in their native state. A new microscopy methodology allowed us to determine the behaviors of silicate, phosphate, and calcium contents from the early stage, as commercially available toothpastes, to the final stage of delivered diffusion, occurring within the enamel layer together with their penetration depth properties. The reported results represent a valuable background towards full comprehension of the role of organic-inorganic biomaterials for developing a controlled biomimetic toothpaste in biofluid media
    • 

    corecore