12 research outputs found

    Effects of Seasonal Precipitation on the Amount of Seepage-A Case Study of Tunnel 3 of Bazai Irrigation Project Khyber Pakhtunkhwa

    Get PDF
    Infiltration of water into tunnel within a harsh geological formation is a vital issue in tunnelling. The consequence impacts due to seepage include tunnel rock instability, pore-water pressure imposition and diminution of operational capacity. The spatial variation in rainfall due to climate change intensifies the threat to tunnel stability. Likewise, to understand the impacts of climate change scenarios on the seepage of tunnel 3 of the Bazai irrigation project was numerically simulated in SEEP/W software by manipulating the rainfall data. The net annual precipitation is followed by two sets of rainfall data i.e., dry and wet season precipitation depending upon the magnitude of rainfall. The analysis revealed that most of the seepage occurred in the unlined portion. In order to determine the future impacts of precipitation on seepage quantity, the wet season precipitation was further increased by 10% and 50% for A1B and B2 conditions respectively. The seepage quantity into the tunnel increases with variation in precipitation patterns. To reduce the risk to tunnel stability, the model was also treated with cement-bentonite grout and bentonite slurry containing 6% solids. The performance of both grouting techniques leads to noticeable seepage deduction. The study further suggests that cement-bentonite is more effective in seepage remediation

    Effects of Seasonal Precipitation on the Amount of Seepage-A Case Study of Tunnel 3 of Bazai Irrigation Project Khyber Pakhtunkhwa

    Get PDF
    Infiltration of water into tunnel within a harsh geological formation is a vital issue in tunnelling. The consequence impacts due to seepage include tunnel rock instability, pore-water pressure imposition and diminution of operational capacity. The spatial variation in rainfall due to climate change intensifies the threat to tunnel stability. Likewise, to understand the impacts of climate change scenarios on the seepage of tunnel 3 of the Bazai irrigation project was numerically simulated in SEEP/W software by manipulating the rainfall data. The net annual precipitation is followed by two sets of rainfall data i.e., dry and wet season precipitation depending upon the magnitude of rainfall. The analysis revealed that most of the seepage occurred in the unlined portion. In order to determine the future impacts of precipitation on seepage quantity, the wet season precipitation was further increased by 10% and 50% for A1B and B2 conditions respectively. The seepage quantity into the tunnel increases with variation in precipitation patterns. To reduce the risk to tunnel stability, the model was also treated with cement-bentonite grout and bentonite slurry containing 6% solids. The performance of both grouting techniques leads to noticeable seepage deduction. The study further suggests that cement-bentonite is more effective in seepage remediation

    Localization of Multiple Harmonic Sources for Inverter Loads Utilizing Periodogram

    Get PDF
    This paper introduces a new technique to localize the multiple harmonic sources that caused by power inverter loads in power distribution system utilizing periodogram technique with single-point measurement approach at the point of common coupling (PCC). The periodogram technique is used to analyzed and distinguish multiple harmonic sources location in power system whether at downstream, upstream or both stream by their impedances characteristics. The proposed localization of multiple harmonic sources method is based on the correlational relationship between fundamental impedance (Z1) and harmonic impedance (Zh) in order to identify the suspected buses. The adequacy of the proposed methodology is tested and verified on distribution system for several different cases

    Synthesis and characterization of a new conducting polymer composite.

    Get PDF
    Organic conductive composite films have been synthesized by electropolymerization of pyrrole in the presence of chitosan and p-toluene sulfonic acid sodium salt. The obtained conductive polymer composite films have been characterized by Fourier Transform Infrared spectroscopy, dynamic mechanical analysis, scanning electron microscopy, X-ray diffraction and conductivity measurements. The prepared polymer composite films had the amorphous structure and exhibited the enhanced conductivity and mechanical properties due to the presence of chitosan in the composite films

    Physical, optical, and electrical properties of a new conducting polymer.

    Get PDF
    This work studies the electrical and optical properties of the conducting polymer composite films of polypyrrole–chitosan (PPy–CHI). The surface plasmon resonance (SPR) technique was used to study the optical properties of PPy and PPy–CHI composite films. Then, the values of the real and imaginary parts of the refractive indexes of PPy and PPy–CHI films were obtained by nonlinear least square fitting using Fresnel equations for a three-layer system of SPR system. The electrical conductivity measurements showed that the conductivity of the electrochemical prepared films improved in the presence of CHI and can be controlled by varying the CHI amount in the composite. The thermal diffusivity of the PPy–CHI composite films was measured by open photoacoustic spectroscopy and it has been shown that the thermal diffusivity is related to the electron migration in the conjugation chain length. The increase in electromagnetic interference shielding effectiveness (EMI SE) with the increase in electrical conductivity of the films is mostly from shielding by reflection rather than absorption

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding

    Effects of seasonal precipitation on the amount of seepage-A case study of tunnel 3 of Bazai irrigation project Khyber Pakhtunkhwa

    Get PDF
    Infiltration of water into tunnel within a harsh geological formation is a vital issue in tunnelling. The consequence impacts due to seepage include tunnel rock instability, pore-water pressure imposition and diminution of operational capacity. The spatial variation in rainfall due to climate change intensifies the threat to tunnel stability. Likewise, to understand the impacts of climate change scenarios on the seepage of tunnel 3 of the Bazai irrigation project was numerically simulated in SEEP/W software by manipulating the rainfall data. The net annual precipitation is followed by two sets of rainfall data i.e., dry and wet season precipitation depending upon the magnitude of rainfall. The analysis revealed that most of the seepage occurred in the unlined portion. In order to determine the future impacts of precipitation on seepage quantity, the wet season precipitation was further increased by 10% and 50% for A1B and B2 conditions respectively. The seepage quantity into the tunnel increases with variation in precipitation patterns. To reduce the risk to tunnel stability, the model was also treated with cement-bentonite grout and bentonite slurry containing 6% solids. The performance of both grouting techniques leads to noticeable seepage deduction. The study further suggests that cement-bentonite is more effective in seepage remediation
    corecore