253 research outputs found

    Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities

    Get PDF
    : Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment

    The TGF-ÎČ Pathway: A Pharmacological Target in Hepatocellular Carcinoma?

    Get PDF
    Transforming Growth Factor-beta (TGF-ÎČ) superfamily members are essential for tissue homeostasis and consequently, dysregulation of their signaling pathways contributes to the development of human diseases. In the liver, TGF-ÎČ signaling participates in all the stages of disease progression from initial liver injury to hepatocellular carcinoma (HCC). During liver carcinogenesis, TGF-ÎČ plays a dual role on the malignant cell, behaving as a suppressor factor at early stages, but contributing to later tumor progression once cells escape from its cytostatic effects. Moreover, TGF-ÎČ can modulate the response of the cells forming the tumor microenvironment that may also contribute to HCC progression, and drive immune evasion of cancer cells. Thus, targeting the TGF-ÎČ pathway may constitute an effective therapeutic option for HCC treatment. However, it is crucial to identify biomarkers that allow to predict the response of the tumors and appropriately select the patients that could benefit from TGF-ÎČ inhibitory therapies. Here we review the functions of TGF-ÎČ on HCC malignant and tumor microenvironment cells, and the current strategies targeting TGF-ÎČ signaling for cancer therapy. We also summarize the clinical impact of TGF-ÎČ inhibitors in HCC patients and provide a perspective on its future use alone or in combinatorial strategies for HCC treatment

    Specific interaction of methionine adenosyltransferase with free radicals

    Get PDF
    Although free radicals have been traditionally implicated in cell injury, and associated to pathophysiological processes, recent data implicate them in cell signaling events. Free radicals are naturally occurring oxygen-,nitrogen-and sulfur-derived species with an unpaired electron, such as superoxide, hydroxyl radical or nitric oxide. In order to assess the role of free radicals in cell signaling, we have studies the modulator effect of oxygen and nitrogen active species on liver methionine adenosyltransferase (MAT), a key metabolic enzyme. The presence of 10 cysteine residues per subunit, makes liver MAT a sensitive target for oxidation/nitrosylation. Here we show that purified MAT from rat liver is nitrosylated and oxidized in vitro. Incubation with H202 or the NO donor S-nitrosylated GSH (GSNO), diminish MAT activity in a dose-and time-dependent manner. Furthermore, the inactivation derived from both oxidation and nitrosylation, was reverted by GSH. MAT inactivation originates on the specific and covalent modification of the sulphydryl group of cysteine residue 121. We also studied how free radicals modulate MAT activity in vivo. It was previously shown that MAT activity is strongly dependent on cellular GSH levels. Generation of oxygen and nitrogen active species in rats by injection of LPS, induced a decrease of liver MAT activity. This effect might derive from nitrosylation and/or oxidation of the enzyme. Modulation of liver MAT by NO is further supported by the inactivation of this enzyme observed in experimental models in which NO is produced; such as the administration of NO donors to rats and in hepatocytes cultured in hypoxia, a condition that induces the expression of the inducible nitric oxide synthase (iNOS). Oxidation also controls liver MAT activity in a cell environment as shown in CHO cells stably transfected with rat liver MAT cDNA upon addition of H2O2 to the culture medium. This effect depends upon the generation of the hydroxyl radical. On the basis of the metabolic implications of liver MAT, together with the structural features accounting for the sensitivity of this enzyme to active oxygen and nitrogen species, we propose that modulation of MAT by these agents could be a mechanism to regulate the consumption of ATP in the liver, and thus preserve cellular viability under different stress conditions

    Functional proteomics of nonalcoholic steatohepatitis: mitochondrial proteins as targets of S-adenosylmethionine

    Get PDF
    Recent work shows that S-adenosylmethionine (AdoMet) helps maintain normal liver function as chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. The mechanisms by which these nontraditional functions of AdoMet occur are unknown. Here, we use knockout mice deficient in hepatic AdoMet synthesis (MAT1A(-/-)) to study the proteome of the liver during the development of steatohepatitis. One hundred and seventeen protein spots, differentially expressed during the development of steatohepatitis, were selected and identified by peptide mass fingerprinting. Among them, 12 proteins were found to be affected from birth, when MAT1A(-/-) expression is switched on in WT mouse liver, to the rise of histological lesions, which occurs at approximately 8 months. Of the 12 proteins, 4 [prohibitin 1 (PHB1), cytochrome c oxidase I and II, and ATPase beta-subunit] have known roles in mitochondrial function. We show that the alteration in expression of PHB1 correlates with a loss of mitochondrial function. Experiments in isolated rat hepatocytes indicate that AdoMet regulates PHB1 content, thus suggesting ways by which steatohepatitis may be induced. Importantly, we found the expression of these mitochondrial proteins was abnormal in obob mice and obese patients who are at risk for nonalcoholic steatohepatitis

    Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth

    Get PDF
    BACKGROUND: Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA) is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. METHODS: To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. RESULTS: In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. CONCLUSIONS: MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment

    Epigenetic mechanisms in gastric cancer: potential new therapeutic opportunities

    Get PDF
    Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment

    GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data

    Get PDF
    Genomic Analysis and Rapid Biological ANnotation (GARBAN) is a new tool that provides an integrated framework to analyze simultaneously and compare multiple data sets derived from microarray or proteomic experiments. It carries out automated classifications of genes or proteins according to the criteria of the Gene Ontology Consortium at a level of depth defined by the user. Additionally, it performs clustering analysis of all sets based on functional categories or on differential expression levels. GARBAN also provides graphical representations of the biological pathways in which all the genes/proteins participate. AVAILABILITY: http://garban.tecnun.es

    Methionine adenosyltransferase II beta subunit gene expression provides a proliferative advantage in human hepatoma

    Get PDF
    BACKGROUND & AIMS: Of the 2 genes (MAT1A, MAT2A) encoding methionine adenosyltransferase, the enzyme that synthesizes S-adenosylmethionine, MAT1A, is expressed in liver, whereas MAT2A is expressed in extrahepatic tissues. In liver, MAT2A expression associates with growth, dedifferentiation, and cancer. Here, we identified the beta subunit as a regulator of proliferation in human hepatoma cell lines. The beta subunit has been cloned and shown to lower the K(m) of methionine adenosyltransferase II alpha2 (the MAT2A product) for methionine and to render the enzyme more susceptible to S-adenosylmethionine inhibition. METHODS: Methionine adenosyltransferase II alpha2 and beta subunit expression was analyzed in human and rat liver and hepatoma cell lines and their interaction studied in HuH7 cells. beta Subunit expression was up- and down-regulated in human hepatoma cell lines and the effect on DNA synthesis determined. RESULTS: We found that beta subunit is expressed in rat extrahepatic tissues but not in normal liver. In human liver, beta subunit expression associates with cirrhosis and hepatoma. beta Subunit is expressed in most (HepG2, PLC, and Hep3B) but not all (HuH7) hepatoma cell lines. Transfection of beta subunit reduced S-adenosylmethionine content and stimulated DNA synthesis in HuH7 cells, whereas down-regulation of beta subunit expression diminished DNA synthesis in HepG2. The interaction between methionine adenosyltransferase II alpha2 and beta subunit was demonstrated in HuH7 cells. CONCLUSIONS: Our findings indicate that beta subunit associates with cirrhosis and cancer providing a proliferative advantage in hepatoma cells through its interaction with methionine adenosyltransferase II alpha2 and down-regulation of S-adenosylmethionine levels

    Amphiregulin: An early trigger of liver regeneration in mice

    Get PDF
    BACKGROUND AND AIMS: Liver regeneration is a unique response directed to restore liver mass after resection or injury. The survival and proliferative signals triggered during this process are conveyed by a complex network of cytokines and growth factors acting in an orderly manner. Activation of the epidermal growth factor receptor is thought to play an important role in liver regeneration. Amphiregulin is a member of the epidermal growth factor family whose expression is not detectable in healthy liver. We have investigated the expression of amphiregulin in liver injury and its role during liver regeneration after partial hepatectomy. METHODS: Amphiregulin gene expression was examined in healthy and cirrhotic human and rat liver, in rodent liver regeneration after partial hepatectomy, and in primary hepatocytes. The proliferative effects and intracellular signaling of amphiregulin were studied in isolated hepatocytes. The in vivo role of amphiregulin in liver regeneration after partial hepatectomy was analyzed in amphiregulin-null mice. RESULTS: Amphiregulin gene expression is detected in chronically injured human and rat liver and is rapidly induced after partial hepatectomy in rodents. Amphiregulin expression is induced in isolated hepatocytes by interleukin 1beta and prostaglandin E(2), but not by hepatocyte growth factor, interleukin 6, or tumor necrosis factor alpha. We show that amphiregulin behaves as a primary mitogen for isolated hepatocytes, acting through the epidermal growth factor receptor. Finally, amphiregulin-null mice display impaired proliferative responses after partial liver resection. CONCLUSIONS: Our findings indicate that amphiregulin is an early-response growth factor that may contribute to the initial phases of liver regeneration

    DNA methylation and histone acetylation of rat methionine adenosyltransferase 1A and 2A genes is tissue-specific

    Get PDF
    Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet). In mammals MAT activity derives from two separate genes which display a tissue-specific pattern of expression. While MAT1A is expressed only in the adult liver, MAT2A is expressed in non-hepatic tissues. The mechanisms behind the selective expression of these two genes are not fully understood. In the present report we have evaluated MAT1A and MAT2A methylation in liver and in other tissues, such as kidney, by methylation-sensitive restriction enzyme digestion of genomic DNA. Our data indicate that MAT1A is hypomethylated in liver and hypermethylated in non-expressing tissues. The opposite situation is found for MAT2A. Additionally, histones associated to MAT1A and MAT2A genes showed enhanced levels of acetylation in expressing tissues (two-fold for MAT1A and 3.5-fold for MAT2A liver and kidney respectively). These observations support a role for chromatin structure and its modification in the tissue-specific expression of both MAT genes
    • 

    corecore