20 research outputs found

    Bose-Einstein condensation in a two-dimensional, trapped,interacting gas

    Get PDF
    We study Bose-Einstein condensation phenomenon in a two-dimensional (2D) system of bosons subjected to an harmonic oscillator type confining potential. The interaction among the 2D bosons is described by a delta-function in configuration space. Solving the Gross-Pitaevskii equation within the two-fluid model we calculate the condensate fraction, ground state energy, and specific heat of the system. Our results indicate that interacting bosons have similar behavior to those of an ideal system for weak interactions.Comment: LaTeX, 4 pages, 4 figures, uses grafik.sty (included), to be published in Phys. Rev. A, tentatively scheduled for 1 October 1998 (Volume 58, Number 4

    Numerical study of the spherically-symmetric Gross-Pitaevskii equation in two space dimensions

    Full text link
    We present a numerical study of the time-dependent and time-independent Gross-Pitaevskii (GP) equation in two space dimensions, which describes the Bose-Einstein condensate of trapped bosons at ultralow temperature with both attractive and repulsive interatomic interactions. Both time-dependent and time-independent GP equations are used to study the stationary problems. In addition the time-dependent approach is used to study some evolution problems of the condensate. Specifically, we study the evolution problem where the trap energy is suddenly changed in a stable preformed condensate. In this case the system oscillates with increasing amplitude and does not remain limited between two stable configurations. Good convergence is obtained in all cases studied.Comment: 9 latex pages, 7 postscript figures, To appear in Phys. Rev.

    A microcosm treatability study for evaluating wood mulch-based amendments as electron donors for trichloroethene (Tce) reductive dechlorination

    Get PDF
    In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes

    Bose-Einstein Condensation in a Harmonic Potential

    Full text link
    We examine several features of Bose-Einstein condensation (BEC) in an external harmonic potential well. In the thermodynamic limit, there is a phase transition to a spatial Bose-Einstein condensed state for dimension D greater than or equal to 2. The thermodynamic limit requires maintaining constant average density by weakening the potential while increasing the particle number N to infinity, while of course in real experiments the potential is fixed and N stays finite. For such finite ideal harmonic systems we show that a BEC still occurs, although without a true phase transition, below a certain ``pseudo-critical'' temperature, even for D=1. We study the momentum-space condensate fraction and find that it vanishes as 1/N^(1/2) in any number of dimensions in the thermodynamic limit. In D less than or equal to 2 the lack of a momentum condensation is in accord with the Hohenberg theorem, but must be reconciled with the existence of a spatial BEC in D=2. For finite systems we derive the N-dependence of the spatial and momentum condensate fractions and the transition temperatures, features that may be experimentally testable. We show that the N-dependence of the 2D ideal-gas transition temperature for a finite system cannot persist in the interacting case because it violates a theorem due to Chester, Penrose, and Onsager.Comment: 34 pages, LaTeX, 6 Postscript figures, Submitted to Jour. Low Temp. Phy

    Exploring dynamic membrane as an alternative for conventional membrane for the treatment of old landfill leachate

    No full text
    This study compares the performance of a lab-scale pre-anoxic and post-aerobic submerged dynamic membrane bioreactor (DMBR) with similar studies on conventional membrane bioreactors (MBRs) for the treatment of old landfill leachate (LFL) while presenting a strategy to achieve stable DMBR operation. The results suggested that DMBR performed similar, or in some cases, better than MBRs. Like conventional MBRs treating LFL, DMBR can also accommodate large variations in operating parameters including influent feed composition and loading rates and thus, it can guarantee long term stable bioreactor operation (total nitrogen removal up to 98%) with acceptable effluent quality (Turbidity < 10 NTU). The results also demonstrated that gradual increment in influent LFL concentration was found to be effective for a stable DMBR operation however, it significantly deteriorated dynamic membrane (DM) filtration performance (p < 10E-7), resulting in higher fouling rate and deteriorated effluent quality. Nonetheless, poor DM performance and higher fouling rate were effectively controlled by using lower mesh porosity (52 \u3bcm instead of 200 \u3bcm) and increase in DM effective filtration area
    corecore