346 research outputs found

    Job Satisfaction of the Employees in the Mobile Phone Corporates in Bangladesh: A Case Study

    Get PDF
    Optimizing employee satisfaction is a key to the success of any business that relies on a variety of organizational and psycho-economic factors. This study was conducted to identify that sort of key factors, which are responsible to influence on the overall job satisfaction in the growing mobile phone corporate in Bangladesh. The phone corporates, which are included here in the study, are Grameen Phone (GP), Bangla Link and Aktel. The factors included in the investigation as independent variables are Compensation Package, Supervision, Career Growth, Training and Development, Working atmosphere, Company Loyalty and Performance Appraisal. The result indicates that training and performance appraisal, work atmosphere, compensation package, supervision, and company loyalty are the key factors that impact on employees’ job satisfaction in these corporations. The study also finds that the employees of these three corporations possessed above of the moderate level and positive attitude towards job satisfaction, which could be nudged up to excellent status of employee satisfaction if the management takes those identified factors with a little more rigorous weight into their considerations and acts further accordingly.

    Venture capital on a shoestring: Bioventures’ pioneering life sciences fund in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 2000, R&D financing for global health has increased significantly, with innovative proposals for further increases. However, although venture capital (VC) funding has fostered life sciences businesses across the developed world, its application in the developing world and particularly in Africa is relatively new. Is VC feasible in the African context, to foster the development and application of local health innovation?</p> <p>As the most industrially advanced African nation, South Africa serves as a test case for life sciences venture funding. This paper analyzes Bioventures, the first VC company focused on life sciences investment in sub-Saharan Africa. The case study method was used to analyze the formation, operation, and investment support of Bioventures, and to suggest lessons for future health venture funds in Africa that aim to develop health-oriented innovations.</p> <p>Discussion</p> <p>The modest financial success of Bioventures in challenging circumstances has demonstrated a proof of concept that life sciences VC can work in the region. Beyond providing funds, support given to investees included board participation, contacts, and strategic services. Bioventures had to be proactive in finding and supporting good health R&D.</p> <p>Due to the fund’s small size, overhead and management expenses were tightly constrained. Bioventures was at times unable to make follow-on investments, being forced instead to give up equity to raise additional capital, and to sell health investments earlier than might have been optimal. With the benefit of hindsight, the CFO of Bioventures felt that partnering with a larger fund might benefit similar future funds. Being better linked to market intelligence and other entrepreneurial investors was also seen as an unmet need.</p> <p>Summary</p> <p>BioVentures has learned lessons about how the traditional VC model might evolve to tackle health challenges facing Africa, including how to raise funds and educate investors; how to select, value, and support investments; and how to understand the balance between financial and social returns. The experience of the fund suggests that future health funds targeting ailments of the poor might require investors that accept health benefits as part of their overall “return.” Learning from Bioventures may help develop health innovation funding for sub-Saharan African that has combined health, financial, and economic development impacts.</p

    Turning science into health solutions: KEMRI’s challenges as Kenya’s health product pathfinder

    Get PDF
    BACKGROUND: A traditional pathway for developing new health products begins with public research institutes generating new knowledge, and ends with the private sector translating this knowledge into new ventures. But while public research institutes are key drivers of basic research in sub-Saharan Africa, the private sector is inadequately prepared to commercialize ideas that emerge from these institutes, resulting in these institutes taking on the role of product development themselves to alleviate the local disease burden. In this article, the case study method is used to analyze the experience of one such public research institute: the Kenya Medical Research Institute (KEMRI). DISCUSSION: Our analysis indicates that KEMRI's product development efforts began modestly, and a manufacturing facility was constructed with a strategy for the facility's product output which was not very successful. The intended products, HIV and Hepatitis B diagnostic kits, had a short product life cycle, and an abrupt change in regulatory requirements left KEMRI with an inactive facility. These problems were the result of poor innovation management capacity, variability in domestic markets, lack of capital to scale up technologies, and an institutional culture that lacked innovation as a priority.However, KEMRI appears to have adapted by diversifying its product line to mitigate risk and ensure continued use of its manufacturing facility. It adopted an open innovation business model which linked it with investors, research partnerships, licensing opportunities, and revenue from contract manufacturing. Other activities that KEMRI has put in place over several years to enhance product development include the establishment of a marketing division, development of an institutional IP policy, and training of its scientists on innovation management. SUMMARY: KEMRI faced many challenges in its attempt at health product development, including shifting markets, lack of infrastructure, inadequate financing, and weak human capital with respect to innovation. However, it overcame them through diversification, partnerships and changes in culture. The findings could have implications for other research institutes in Sub-Saharan Africa seeking to develop health products. Such institutes must analyze potential demand and uptake, yet be prepared to face the unexpected and develop appropriate risk-mitigating strategies

    Harnessing biodiversity: the Malagasy Institute of Applied Research (IMRA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biopiracy – the use of a people’s long-established medical knowledge without acknowledgement or compensation – has been a disturbing historical reality and exacerbates the global rich-poor divide. Bioprospecting, however, describes the commercialization of indigenous medicines in a manner acceptable to the local populace. Challenges facing bioprospectors seeking to develop traditional medicines in a quality-controlled manner include a lack of skilled labor and high-tech infrastructure, adapting Northern R&D protocols to Southern settings, keeping products affordable for the local population, and managing the threat of biopiracy. The Malagasy Institute of Applied Research (IMRA) has employed bioprospecting to develop new health treatments for conditions such as diabetes and burns. Because of its integration of Western science and Malagasy cultural traditions, IMRA may provide a useful example for African and other organizations interested in bioprospecting.</p> <p>Discussion</p> <p>IMRA’s approach to drug development and commercialization was adapted from the outset to Malagasy culture and Southern economic landscapes. It achieved a balance between employing Northern R&D practices and following local cultural norms through four guiding principles. First, IMRA’s researchers understood and respected local practices, and sought to use rather than resist them. Second, IMRA engaged the local community early in the drug development process, and ensured that local people had a stake in its success. Third, IMRA actively collaborated with local and international partners to increase its credibility and research capacity. Fourth, IMRA obtained foreign research funds targeting the “diseases of civilization” to cross-fund the development of drugs for conditions that affect the Malagasy population. These principles are illustrated in the development of IMRA products like Madeglucyl, a treatment for diabetes management that was developed from a traditional remedy.</p> <p>Summary</p> <p>By combining local and international research interests, IMRA has been able to keep its treatments affordable for the Malagasy population. Our analysis of IMRA’s history, strategy, and challenges suggests that other developing world institutions seeking to use bioprospecting to address issues of local access to medicines would be well-advised to treat traditional medical knowledge with respect and humility, share its benefits with the local community, and pursue strategic partnerships.</p

    Health care waste management issues in Bangladesh

    Get PDF

    AIR TEMPERATURE AND SUNLIGHT INTENSITY OF DIFFERENT GROWING PERIOD AFFECTS THE BIOMASS, LEAF COLOR AND BETACYANIN PIGMENT ACCUMULATIONS IN RED AMARANTH (AMARANTHUS TRICOLOR L.)

    Get PDF
    The objectives of this study were to determine the effects of daily air temperature and sunlight intensity variations on biomass production, leaf color and betacyanin accumulations in red amaranth (Amaranthus tricolor L.). For this purpose, two improved cultivars; BARI-1 and Altopati were grown in seven different period (from April to October, 2006) under vinyl house condition in the experimental facilities of Gifu University, Japan. The mean daily temperatures fluctuated from 18 (growing month- April) to 29ÂșC (August), while the mean sunlight intensities varied from 850 (October) to 1257 ÎŒmol m-2 S-1 (August). The highest biomass yield and betacyanin accumulation was obtained in the warmer growing period (July and August) at 28 to 29ÂșC mean air temperatures and 1240 to 1257 ÎŒmol m-2 S-1 sunlight intensity. At the warmer growing period red amaranth produced red leaves with high color index, which enhanced the betacyanin accumulations. The biomass yield and betacyanin accumulations were reduced significantly in the growing period/month April and October under low temperature regimes (mean air temperature 18 and 19ÂșC, respectively). However, growing period’s air temperature contributed more for biomass and betacyanin accumulations in red amaranth than sunlight intensity. Comparing two cultivars the biomass yield of BARI-1 was higher biomass yield than that of Altopati and Altopati highlighted with the higher betacyanin accumulations than that of BARI-1 in all growing period. Quantification of the effects of daily air temperature and sunlight intensity on biomass and betacyanin accumulation is important for growers producing these crops for fresh market and also optimize the best growing period. Therefore the influence of air temperatures and sunlight intensity should be considered while grown red amaranth for maximum yield with bioactive compounds like betacyanin and should be grown in between 28 to 29ÂșC air temperature and 1240 to 1257 ÎŒmol.m-2.S-1. of sunlight intensity

    Indian vaccine innovation: the case of Shantha Biotechnics

    Get PDF
    BACKGROUND: Although the World Health Organization had recommended that every child be vaccinated for Hepatitis B by the early 1980s, large multinational pharmaceutical companies held monopolies on the recombinant Hepatitis B vaccine. At a price as high as USD23adose,mostIndiansfamiliescouldnotaffordvaccination.ShanthaBiotechnics,apioneeringIndianbiotechnologycompanyfoundedin1993,sawanunmetneeddomestically,anddevelopednovelprocessesformanufacturingHepatitisBvaccinetoreducepricestolessthan23 a dose, most Indians families could not afford vaccination. Shantha Biotechnics, a pioneering Indian biotechnology company founded in 1993, saw an unmet need domestically, and developed novel processes for manufacturing Hepatitis B vaccine to reduce prices to less than 1/dose. Further expansion enabled low-cost mass vaccination globally through organizations such as UNICEF. In 2009, Shantha sold over 120 million doses of vaccines. The company was recently acquired by Sanofi-Aventis at a valuation of USD$784 million. METHODS: The case study and grounded research method was used to illustrate how the globalization of healthcare R&D is enabling private sector companies such as Shantha to address access to essential medicines. Sources including interviews, literature analysis, and on-site observations were combined to conduct a robust examination of Shantha's evolution as a major provider of vaccines for global health indications. RESULTS: Shantha's ability to become a significant global vaccine manufacturer and achieve international valuation and market success appears to have been made possible by focusing first on the local health needs of India. How Shantha achieved this balance can be understood in terms of a framework of four guiding principles. First, Shantha identified a therapeutic area (Hepatitis B) in which cost efficiencies could be achieved for reaching the poor. Second, Shantha persistently sought investments and partnerships from non-traditional and international sources including the Foreign Ministry of Oman and Pfizer. Third, Shantha focused on innovation and quality - investing in innovation from the outset yielded the crucial process innovation that allowed Shantha to make an affordable vaccine. Fourth, Shantha constructed its own cGMP facility, which established credibility for vaccine prequalification by the World Health Organization and generated interest from large pharmaceutical companies in its contract research services. These two sources of revenue allowed Shantha to continue to invest in health innovation relevant to the developing world. CONCLUSIONS: The Shantha case study underscores the important role the private sector can play in global health and access to medicines. Home-grown companies in the developing world are becoming a source of low-cost, locally relevant healthcare R&D for therapeutics such as vaccines. Such companies may be compelled by market forces to focus on products relevant to diseases endemic in their country. Sanofi-Aventis' acquisition of Shantha reveals that even large pharmaceutical companies based in the developed world have recognized the importance of meeting the health needs of the developing world. Collectively, these processes suggest an ability to tap into private sector investments for global health innovation, and illustrate the globalization of healthcare R&D to the developing world

    Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Get PDF
    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment

    Africa's largest long-lasting insecticide-treated net producer: lessons from A to Z Textiles

    Get PDF
    Abstract Background Field trials have demonstrated the efficacy of insecticide-treated nets, and the WHO has recently endorsed a shift toward Long-Lasting Insecticide Treated nets (LLINs) due to factors such as reduced distribution costs. However, the need for LLINs poses several challenges. Is it possible to manufacture LLINs in large quantities in the African continent, where malaria is most endemic? When production is located in low-income countries, what role is played by local funding and employment, scaling up manufacturing, and partnerships? What factors influence availability and pricing? Discussion A case study of A to Z Textiles was undertaken to answer the question of how large-scale production of LLINs can occur in a low income setting. One of the largest sources of bed nets for Africa, A to Z Textiles is Africa-based, and its Tanzanian operations have a production capacity of 30 million LLINs per year, along with full WHO recommendation for its nets. Our analysis is based on semi-structured interviews with key informants familiar with A to Z, site visits in Tanzania, and literature reviews. This paper discusses the history and current status of A to Z Textiles, identifies the factors that led to its success, and suggests policy considerations that could support similar initiatives in the future. Local funding, scaling up manufacturing, technology transfer, and partnerships all played important roles in A to Z’s ascent, as did perceived benefits of local employment and capacity-building. Regulatory issues and procurement rules acted as barriers. A to Z cost-effectively manufactures high-quality LLINs where malaria is most endemic. Summary With a production capacity of 30 million LLINs per year, and full WHOPES (WHO Pesticide Evaluation Scheme) certification, A to Z Textiles demonstrates how key health goods can be successfully produced in the low-income countries that use them. Its example may be instructive and of high interest to readers in the malaria community, especially in developing countries, and to those who wish to support or partner with efforts by developing countries to build their health innovation capacity.</p
    • 

    corecore