45 research outputs found

    Stochastic Quantization and Casimir Forces: Pistons of Arbitrary Cross Section

    Full text link
    Recently, a method based on stochastic quantization has been proposed to compute the Casimir force and its fluctuations in arbitrary geometries. It relies on the spectral decomposition of the Laplacian operator in the given geometry. Both quantum and thermal fluctuations are considered. Here we use such method to compute the Casimir force on the plates of a finite piston of arbitrary cross section. Asymptotic expressions valid at low and high temperatures and short and long distances are obtained. The case of a piston with triangular cross section is analysed in detail. The regularization of the divergent stress tensor is described.Comment: 10 pages and 4 figures. Accepted for publication in the Proceedings of the tenth conference on Quantum Field Theory under the influence of external conditions - QFEXT'1

    Exact propagators for SUSY partners

    Full text link
    Pairs of SUSY partner Hamiltonians are studied which are interrelated by usual (linear) or polynomial supersymmetry. Assuming the model of one of the Hamiltonians as exactly solvable with known propagator, expressions for propagators of partner models are derived. The corresponding general results are applied to "a particle in a box", the Harmonic oscillator and a free particle (i.e. to transparent potentials).Comment: 31 page

    The rise of policy coherence for development: a multi-causal approach

    Get PDF
    In recent years policy coherence for development (PCD) has become a key principle in international development debates, and it is likely to become even more relevant in the discussions on the post-2015 sustainable development goals. This article addresses the rise of PCD on the Western donors’ aid agenda. While the concept already appeared in the work of Organisation for Economic Co-operation and Development (OECD) in the early 1990s, it took until 2007 before PCD became one of the Organisation’s key priorities. We adopt a complexity-sensitive perspective, involving a process-tracing analysis and a multi-causal explanatory framework. We argue that the rise of PCD is not as contingent as it looks. While actors such as the EU, the DAC and OECD Secretariat were the ‘active causes’ of the rise of PCD, it is equally important to look at the underlying ‘constitutive causes’ which enabled policy coherence to thrive well

    Stochastic Quantization and Casimir Forces

    Full text link
    In this paper we show how the stochastic quantization method developed by Parisi and Wu can be used to obtain Casimir forces. Both quantum and thermal fluctuations are taken into account by a Langevin equation for the field. The method allows the Casimir force to be obtained directly, derived from the stress tensor instead of the free energy. It only requires the spectral decomposition of the Laplacian operator in the given geometry. The formalism provides also an expression for the fluctuations of the force. As an application we compute the Casimir force on the plates of a finite piston of arbitrary cross section. Fluctuations of the force are also directly obtained, and it is shown that, in the piston case, the variance of the force is twice the force squared.Comment: Submitted to EP

    Impurity and quaternions in nonrelativistic scattering from a quantum memory

    Full text link
    Models of quantum computing rely on transformations of the states of a quantum memory. We study mathematical aspects of a model proposed by Wu in which the memory state is changed via the scattering of incoming particles. This operation causes the memory content to deviate from a pure state, i.e. induces impurity. For nonrelativistic particles scattered from a two-state memory and sufficiently general interaction potentials in 1+1 dimensions, we express impurity in terms of quaternionic commutators. In this context, pure memory states correspond to null hyperbolic quaternions. In the case with point interactions, the scattering process amounts to appropriate rotations of quaternions in the frequency domain. Our work complements a previous analysis by Margetis and Myers (2006 J. Phys. A 39 11567--11581).Comment: 16 pages, no figure

    Subcellular peptide localization in single identified neurons by capillary microsampling mass spectrometry

    Get PDF
    Single cell mass spectrometry (MS) is uniquely positioned for the sequencing and identification of peptides in rare cells. Small peptides can take on different roles in subcellular compartments. Whereas some peptides serve as neurotransmitters in the cytoplasm, they can also function as transcription factors in the nucleus. Thus, there is a need to analyze the subcellular peptide compositions in identified single cells. Here, we apply capillary microsampling MS with ion mobility separation for the sequencing of peptides in single neurons of the mollusk Lymnaea stagnalis, and the analysis of peptide distributions between the cytoplasm and nucleus of identified single neurons that are known to express cardioactive Phe-Met-Arg-Phe amide-like (FMRFamide-like) neuropeptides. Nuclei and cytoplasm of Type 1 and Type 2 F group (Fgp) neurons were analyzed for neuropeptides cleaved from the protein precursors encoded by alternative splicing products of the FMRFamide gene. Relative abundances of nine neuropeptides were determined in the cytoplasm. The nuclei contained six of these peptides at different abundances. Enabled by its relative enrichment in Fgp neurons, a new 28-residue neuropeptide was sequenced by tandem MS

    Curdlan intake changes gut microbial composition, short-chain fatty acid production, and bile acid transformation in mice.

    Get PDF
    Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice

    Nonlinear Fredholm Integro-Differential Equations

    No full text
    corecore