14 research outputs found
The effect of repeated stress on KCC2 and NKCC1 immunoreactivity in the hippocampus of female mice
AbstractK+–Cl− co-transporter (KCC2) and Na+–K+–2Cl− co-transporter (NKCC1) are the main regulators of neuronal intracellular chloride concentration; altered expression patterns of KCC2 and NKCC1 have been reported in several neurodegenerative diseases. In this paper, we show the effect of repeated stress on KCC2, NKCC1, and serine 940 phosphorylated KCC2 (pKCC2ser940) immunoreactivity.The data were obtained from the hippocampus of female mice using single-plane confocal microscopy images. The mean fluorescence intensity of the perisomatic area of neurons, defined as raw fluorescence intensity (RFI) was calculated. Repeated stress (RS) resulted in a decrease in perisomatic area of immunoreactive (IR)-KCC2 and an increase of the IR-NKCC1. In addition, RS decreased perisomatic IR-pKCC2ser940, corresponding to that of KCC2. The data in this article support the results of a previous study [1] and provide the details of immunohistological methods. Interpretation of the data in this article can be found in “Repeated stress-induced expression pattern alterations of the hippocampal chloride transporters KCC2 and NKCC1 associated with behavioral abnormalities in female mice” by Tsukahara et al. [1]
The effect of repeated stress on KCC2 and NKCC1 immunoreactivity in the hippocampus of female mice
K+–Cl− co-transporter (KCC2) and Na+–K+–2Cl− co-transporter (NKCC1) are the main regulators of neuronal intracellular chloride concentration; altered expression patterns of KCC2 and NKCC1 have been reported in several neurodegenerative diseases. In this paper, we show the effect of repeated stress on KCC2, NKCC1, and serine 940 phosphorylated KCC2 (pKCC2ser940) immunoreactivity.The data were obtained from the hippocampus of female mice using single-plane confocal microscopy images. The mean fluorescence intensity of the perisomatic area of neurons, defined as raw fluorescence intensity (RFI) was calculated. Repeated stress (RS) resulted in a decrease in perisomatic area of immunoreactive (IR)-KCC2 and an increase of the IR-NKCC1. In addition, RS decreased perisomatic IR-pKCC2ser940, corresponding to that of KCC2. The data in this article support the results of a previous study [1] and provide the details of immunohistological methods. Interpretation of the data in this article can be found in “Repeated stress-induced expression pattern alterations of the hippocampal chloride transporters KCC2 and NKCC1 associated with behavioral abnormalities in female mice” by Tsukahara et al. [1]. Keywords: KCC2, NKCC1, repeated stress, IH
GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors
GATA-2 is a zinc finger transcription factor essential for the development of hematopoiesis. While GATA-2 is generally considered to play an important role in the biology of hematopoietic stem and progenitor cells, its function within these compartments is not well understood. Here we have employed both conditional expression of GATA-2 and conditional activation of a GATA-2/estrogen receptor (ER) chimera to examine the effect of enforced GATA-2 expression in the development and differentiation of hematopoietic progenitors from murine embryonic stem cells. Consistent with the phenotype of GATA-2 null animals, conditional expression of GATA-2 from a tetracycline-inducible promoter enhanced the production of hematopoietic progenitors. Conditional activation of a GATA-2/ER chimera produced essentially opposite effects to those observed with conditional GATA-2 expression. GATA-2 and GATA-2/ER differ in their binding activities and transcriptional interactions from other hematopoietic-associated transcription factors such as c-Myb and PU.1. While we have exploited these differences in activity to explore the transcriptional networks underlying hematopoietic cell fate determination, our results suggest that care should be taken in interpreting results obtained using only chimeric proteins
A relation between osteoclastogenesis inhibition and membrane-type estrogen receptor GPR30
AbstractDisruption of the cooperative balance between osteoblasts and osteoclasts causes various bone disorders, some of which are because of abnormal osteoclast recruitment. Osteoporosis, one of the bone disorders, is not effectively treated by currently available medicines. In addition to the development of novel drugs for palliative treatment, the exploitation of novel compounds for preventive treatment is important in an aging society. Quercetin, a major flavonoid found in many fruits and vegetables, has been expected to inhibit cancer and prevent several diseases because of its anti-inflammatory and estrogenic functions. It has been reported that quercetin has the potential to reduce bone resorption, but the mechanism by which this compound affects the differentiation of osteoclasts remains unknown. Here, using a bone marrow cell-based in vitro osteoclast differentiation system from bone marrow cells, we found that the ability of quercetin to inhibit osteoclastogenesis was related to its estrogenic activity. The inhibition was partially blocked by a specific antagonist for the nuclear receptor estrogen receptor α, but a specific antagonist of the membrane-type receptor GPR30 completely ablated this inhibition. Furthermore, quercetin suppressed the transient increase of Akt phosphorylation induced by the stimulation of macrophage colony-stimulating factor and receptor activator of NF-κB ligand with no effect on MAPK phosphorylation, suggesting exquisite crosstalk between cytokine receptor and G-protein coupled receptor signaling. These results indicate the important role of GPR30 in osteoclast differentiation and provide new insights to the development of new treatments for osteoporosis
Water-Assisted Perovskite Quantum Dots with High Optical Properties
Lead halide perovskite quantum dots (PeQDs) have excellent optical properties, such as narrow emission spectra (FWHM: 18–30 nm), a tunable bandgap (λPL: 420–780 nm), and excellent photoluminescence quantum yields (PLQYs: >90%). PeQDs are known as a material that is easily decomposed when exposed to water in the atmosphere, resulting in causing PeQDs to lower performance. On the other hand, according to the recent reports, adding water after preparing the PeQD dispersion decomposed the PeQD surface defects, resulting in improving their PLQY. Namely, controlling the amount of assisting water during the preparation of the PeQDs is a significantly critical factor to determining their optical properties and device applications. In this paper, our research group discovered the novel effects of the small amount of water to their optical properties when preparing the PeQDs. According to the TEM Images, the PeQDs particle size was clearly increased after water-assisting. In addition, XPS measurement showed that the ratio of Br/Pb achieved to be close to three. Namely, by passivating the surface defect using Ostwald ripening, the prepared PeQDs achieved a high PLQY of over 95%