82 research outputs found
Optical collisions of cold, metastable helium atoms
We have studied the optical collisions of cold, metastable
helium atoms in a magneto-optical trap. We have detected
the rate of Penning and associative ionization of two
metastable helium atoms at a temperature of 1 mK with and
without nearly resonant light. We find that the associative
ionization rate is increased with more than a factor 20 due to
the presence of the light field. The absolute ionization rate
near resonance of (1.9±0.8)×10^(-9) cm3/s for the optical collision
differs two orders of magnitude with the rate reported
by Bardou et al. (Europhys. Lett. 20, 681 (1992)). Our experimental
findings are in good agreement with theory. We
present a simple, semi-classical model, which accounts for all
the observed features
Photo induced collisions with laser cooled He* atoms
This paper presents an experimental investigation of cold collisions between metastable Helium
atoms in an optical trap at 1mK. Penning (PI) and associative (AI) ionization reactions are distinguished
using a mass spectrometer and studied under influence of near resonant laser light. Sensitive behavior of the
ion rate is observed when the laser is tuned close to resonance. Experimental ?ndings are well described,
on an absolute scale, by a semi-classical model we have developed for optical collisions and by a modi?ed
Julienne-Vigu´e model
Evaluation of the Gauss-Eyring model to predict thermal inactivation of micro-organisms at short holding times
Application of mild (non)-thermal processing technologies have received considerable interest as alternative to thermal pasteurisation, because of its shorter holding time and lower temperature aiming for an improved product quality. To understand and develop these alternative technologies, like pulsed electric fields, a proper comparison between the conventional thermal and alternative process is necessary. Up to recent, no suitable models were available to predict the inactivation of micro-organisms by a thermal process at a chosen short holding time, due to non-linearity. The recently developed Gauss-Eyring model with two variables temperature and time has the properties to be a suitable model to apply for short holding times, and was tested for this purpose. Therefore, this study aims to validate if the Gauss-Eyring model can be used to describe non-linear isothermal (a fixed temperature with varying holding time) and isotime (a fixed holding time with varying temperature) thermal inactivation data, and if it is a suitable model to predict the thermal inactivation as a function of temperature for short holding times. Inactivation data of Escherichia coli, Listeria monocytogenes, Lactobacillus plantarum, Salmonella Senftenberg and Saccharomyces cerevisiae in orange juice were collected via isothermal and isotime inactivation kinetics. Survival of the tested micro-organisms was modelled with the Gauss-Eyring model, which contains three parameters σ Tr and Z. The transition of ‘no inactivation’ to ‘inactivation’ (i.e. the ‘shoulder’ in inactivation curves) can be characterised as the temperature-time (T,t) combination where T = Tr − Z · log10(t), with Tr as the reference temperature defined for 1 s treatment, Z as the temperature needed for a 10-fold increase of decrease of the holding time t, and σ as the temperature width of the distribution. The Gauss-Eyring model fitted well to the experimental data, and revealed different sensitivity for the tested micro-organisms. Based on the parameter estimations, survival curves for the desired short holding times were predicted.</p
Magneto-optical trap for metastable helium at 389 nm
We have constructed a magneto-optical trap (MOT) for metastable triplet
helium atoms utilizing the 2 3S1 -> 3 3P2 line at 389 nm as the trapping and
cooling transition. The far-red-detuned MOT (detuning Delta = -41 MHz)
typically contains few times 10^7 atoms at a relatively high (~10^9 cm^-3)
density, which is a consequence of the large momentum transfer per photon at
389 nm and a small two-body loss rate coefficient (2 * 10^-10 cm^3/s < beta <
1.0 * 10^-9 cm^3/s). The two-body loss rate is more than five times smaller
than in a MOT on the commonly used 2 3S1 -> 2 3P2 line at 1083 nm. Furthermore,
we measure a temperature of 0.46(1) mK, a factor 2.5 lower as compared to the
1083 nm case. Decreasing the detuning to Delta= -9 MHz results in a cloud
temperature as low as 0.25(1) mK, at small number of trapped atoms. The 389 nm
MOT exhibits small losses due to two-photon ionization, which have been
investigated as well.Comment: 11 page
A primary current distribution model of a novel micro-electroporation channel configuration
Traditional macro and micro-electroporation devices utilize facing electrodes, which generate electric fields inversely proportional to their separation distance. Although the separation distances in micro-electroporation devices are significantly smaller than those in macro-electroporation devices, they are limited by cell size. Because of this, significant potential differences are required to induce electroporation. These potential differences are often large enough to cause water electrolysis, resulting in electrode depletion and bubble formation, both of which adversely affect the electroporation process. Here, we present a theoretical study of a novel micro-electroporation channel composed of an electrolyte flowing over a series of adjacent electrodes separated by infinitesimally small insulators. Application of a small, non-electrolysis inducing potential difference between the adjacent electrodes results in radially-varying electric fields that emanate from these insulators, causing cells flowing through the channel to experience a pulsed electric field. This eliminates the need for a pulse generator, making a minimal power source (such as a battery) the only electrical equipment that is needed. A non-dimensional primary current distribution model of the novel micro-electroporation channel shows that decreasing the channel height results in an exponential increase in the electric field magnitude, and that cells experience exponentially greater electric field magnitudes the closer they are to the channel walls. Finally, dimensional primary current distribution models of two potential applications, water sterilization and cell transfection, demonstrate the practical feasibility of the novel micro-electroporation channel
Photoassociation spectroscopy of cold He(2(3)S) atoms
We observe vibrational states by photoassociation spectroscopy of cold He(2 3S) atoms. Photoassociation resonances are detected as peaks in the Penning ionization rate over a frequency range of 20 GHz below the atomic 2 3S1-2 3P2 transition frequency. We have observed three vibrational series, of which two can be identified. A possible mechanism to explain the observed increase of the Penning ionization rate is discussed
A Theoretical Analysis of the Feasibility of a Singularity-Induced Micro-Electroporation System
Electroporation, the permeabilization of the cell membrane lipid bilayer due to a pulsed electric field, has important implications in the biotechnology, medicine, and food industries. Traditional macro and micro-electroporation devices have facing electrodes, and require significant potential differences to induce electroporation. The goal of this theoretical study is to investigate the feasibility of singularity-induced micro-electroporation; an electroporation configuration aimed at minimizing the potential differences required to induce electroporation by separating adjacent electrodes with a nanometer-scale insulator. In particular, this study aims to understand the effect of (1) insulator thickness and (2) electrode kinetics on electric field distributions in the singularity-induced micro-electroporation configuration. A non-dimensional primary current distribution model of the micro-electroporation channel shows that while increasing insulator thickness results in smaller electric field magnitudes, electroporation can still be performed with insulators thick enough to be made with microfabrication techniques. Furthermore, a secondary current distribution model of the singularity-induced micro-electroporation configuration with inert platinum electrodes and water electrolyte indicates that electrode kinetics do not inhibit charge transfer to the extent that prohibitively large potential differences are required to perform electroporation. These results indicate that singularity-induced micro-electroporation could be used to develop an electroporation system that consumes minimal power, making it suitable for remote applications such as the sterilization of water and other liquids
- …