20 research outputs found

    Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle

    Get PDF
    International audienceBACKGROUND: MicroRNAs (miRNAs) are small RNA molecules that post-transcriptionally regulate gene expression and have been shown to play an important role during development. miR-1, miR-133a, miR-133b and miR-206 are expressed in muscle tissue and induced during muscle cell differentiation, a process that directs myoblasts to differentiate into mature myotubes, which are organized into myofibers. Although miR-1, miR-133a, miR-133b and miR-206 are well-studied in muscle, there is no information about their expression and function during human development. The purpose of this study was to determine the profile of these miRNAs in muscle cells isolated from different stages of human development. RESULTS: We examined the levels of miR-1, miR-133a, miR-133b and miR-206 during the development of human foetus. All four miRNA levels were found increased during late stages of human foetal muscle development. Increases in the expression levels of these miRNAs were proportional to the capacity of myoblasts to form myotubes. Changes in miRNA levels during human foetal development were accompanied by endogenous alterations in their known targets and also in their inducer, MyoD. Ectopic MyoD expression caused an induction of muscle cell differentiation in vitro, accompanied by an increase in the levels of miR-1, miR-133a, miR-133b and miR-206. CONCLUSIONS: This study provides data about the profile of four miRNAs in human muscle cells isolated during different stages of foetal development. These results may shed light on the differentiation of muscle cells and regulation of muscle formation through miRNAs, during the development of human foetus

    The Application of Ribozymes and DNAzymes in Muscle and Brain

    Get PDF
    The discovery of catalytic nucleic acids (CNAs) has provided scientists with valuable tools for the identification of new therapies for several untreated diseases through down regulation or modulation of endogenous gene expression involved in these ailments. These CNAs aim either towards the elimination or repair of pathological gene expression. Ribozymes, a class of CNAs, can be mostly used to down-regulate (by RNA cleavage) or repair (by RNA trans-splicing) unwanted gene expression involved in disease. DNAzymes, derived by in vitro selection processes are also able to bind and cleave RNA targets and therefore down-regulate gene expression. The purpose of this review is to present and discuss several applications of ribozymes and DNAzymes in muscle and brain. There are several diseases which affect muscle and brain and catalytic nucleic acids have been used as tools to target specific cellular transcripts involved in these groups of diseases

    miR-186 inhibits muscle cell differentiation through myogenin regulation

    No full text
    The complex process of skeletal muscle differentiation is organized by the myogenic regulatory factors (MRFs), Myf5, MyoD, Myf6, and myogenin, where myogenin plays a critical role in the regulation of the final stage of muscle differentiation. In an effort to investigate the role microRNAs (miRNAs) play in regulating myogenin, a bioinformatics approach was used and six miRNAs (miR-182, miR-186, miR-135, miR-491, miR-329, and miR-96) were predicted to bind the myogenin 3′-untranslated region (UTR). However, luciferase assays showed only miR-186 inhibited translation and 3′-UTR mutagenesis analysis confirmed this interaction was specific. Interestingly, the expression of miR-186 mirrored that of its host gene, ZRANB2, during development. Functional studies demonstrated that miR-186 overexpression inhibited the differentiation of C2C12 and primary muscle cells. Our findings therefore identify miR-186 as a novel regulator of myogenic differentiation

    Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers

    No full text
    Oligonucleotide gene therapy has shown great promise for the treatment of muscular dystrophies. Nevertheless, the selective delivery to affected muscles has shown to be challenging because of their high representation in the body and the high complexity of their cell membranes. Current trials show loss of therapeutic molecules to non-target tissues leading to lower target efficacy. Therefore, strategies that increase uptake efficiency would be particularly compelling. To address this need, we applied a cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment) approach and identified a skeletal muscle-specific RNA aptamer. A01B RNA aptamer preferentially internalizes in skeletal muscle cells and exhibits decreased affinity for off-target cells. Moreover, this in vitro selected aptamer retained its functionality in vivo, suggesting a potential new approach for targeting skeletal muscles. Ultimately, this will aid in the development of targeted oligonucleotide therapies against muscular dystrophies

    Woodchuck post-transcriptional element induces nuclear export of myotonic dystrophy 3′ untranslated region transcripts

    No full text
    The woodchuck post-transcriptional regulatory element (WPRE) can naturally accumulate hepatitis transcripts in the cytoplasm, and has been recently exploited as an enhancer of transgene expression. The retention of mutant myotonic dystrophy protein kinase (DMPK) transcripts in the nucleus of myotonic dystrophy (DM) cells has an important pathogenic role in the disease, resulting in pleiotropic effects including delayed myoblast differentiation. In this study, we report the first use of WPRE as a tool to enhance nuclear export of an aberrantly retained messenger RNA. Stable cell lines expressing the normal and mutant DMPK 3′ UTR (3′ untranslated region) complementary DNA, with or without WPRE, were produced. It is noteworthy that WPRE stimulated extensive transport of mutant transcripts to the cytoplasm. This was associated with repair of the defective cellular MyoD levels and a subsequent increase in myoblast differentiation. These results provide the basis for a cellular model that can be exploited in DM and in the study of RNA transport mechanisms
    corecore