39 research outputs found

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Effect of plasma shaping on performance in the National Spherical Torus Experiment

    Full text link
    The National Spherical Torus Experiment (NSTX) has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic (MHD) modes (e.g., ideal external kinks and resistive wall modes), edge localized modes (ELMs), bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving Βt ∼40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation κ∼2.8 and triangularity δ∼0.8. Ideal MHD theory predicts increased stability at high values of shaping factor S≡ q95 Ip (a Bt), which has been observed at large values of the S∼37 [MA (m·T)] on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed Ip. The achievement of strong shaping has enabled operation with 1 s pulses with Ip =1 MA, and for 1.6 s for Ip =700 kA. Analysis of the noninductive current fraction as well as empirical analysis of the achievable plasma pulse length as elongation is varied will be presented. Data are presented showing a reduction in peak divertor heat load due to increasing in flux expansion. © 2006 American Institute of Physics

    Deontic Justice and Organizational Neuroscience

    Full text link

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    ANALYSIS OF PRESSURE OSCILLATIONS DATA IN GAS TURBINE ANNULAR COMBUSTION CHAMBER EQUIPPED WITH PASSIVE DAMPER

    No full text
    ABSTRACT Growing environmental awareness, the current legislations, and the increasing competition in the energy market lead gas turbine manufacturers to develop combustion chambers that have to guarantee low NOx emissions, low pressure drop and high combustor outlet temperature. Modern annular and can-type gas turbine combustion chambers, able to work in lean premixed mode, show a remarkable attitude to produce flame instabilities, well known as humming. Many theoretical approaches have been proposed in order to describe the phenomenon and predict the stability margin of the burner. Experimental tests are needed to assess mathematical models and to evaluate the effects of either active or passive methodologies adopted to reduce combustion driven instabilities. Tests have been carried out at the Ansaldo Caldaie test bed on a real-size annular combustion chamber, equipped with a certain number of Helmholtz resonators. The combustion chamber has been instrumented with piezoelectric and opto-electronic transducers in order to determine the pressure field both in proximity of the instability limit and in humming condition. When pressure data are collected before than humming appears, pressure oscillations are much lower than those gathered in humming conditions; therefore, by using sensors designed to work under the pressure levels characterising the humming conditions, difficulties arise in proximity of the stability limit due the low signal-to-noise ratio. In this paper some techniques used to analyse the data gathered from the tests will be shown. Moreover, a simple algorithm capable to analyse a large amount of data and to synthesise them into a few significant parameters useful for the spectral analysis of the pressure field, has been validated by means of both real and simulated signals. INTRODUCTION To obtain both higher and higher gas turbine efficiency and low pollutant emissions, gas turbine manufacturers have developed annular and cannular combustion chamber increasing heat release density, and burning fuel in lean premixed mode. In such conditions thermoacoustic instabilities may occur. This phenomenon, of which Lord Rayleigh in 1878 [1] first gave a theoretical explanation, consists in a self-excited interaction of pressure waves and heat release fluctuations and it is nowadays recognised under the name of &quot;humming&quot;. The humming is not compatible with a safe operating condition of the engine. Many approaches are used to model this complex phenomenon: some of them are based on CFD approach, in the time domain, adopting also DNS or LES technique
    corecore