4 research outputs found

    Evolutionary conserved role of neural cell adhesion molecule-1 in memory.

    Get PDF
    Vukojevic V, Mastrandreas P, Arnold A, et al. Evolutionary conserved role of neural cell adhesion molecule-1 in memory. Translational psychiatry. 2020;10(1): 217.The neural cell adhesion molecule 1 (NCAM-1) has been implicated in several brain-related biological processes, including neuronal migration, axonal branching, fasciculation, and synaptogenesis, with a pivotal role in synaptic plasticity. Here, we investigated the evolutionary conserved role of NCAM-1 in learning and memory. First, we investigated sustained changes in ncam-1 expression following aversive olfactory conditioning in C. elegans using molecular genetic methods. Furthermore, we examined the link between epigenetic signatures of the NCAM1 gene and memory in two human samples of healthy individuals (N=568 and N=319) and in two samples of traumatized individuals (N=350 and N=463). We found that olfactory conditioning in C. elegans induced ncam-1 expression and that loss of ncam-1 function selectively impaired associative long-term memory, without causing acquisition, sensory, or short-term memory deficits. Reintroduction of the C. elegans or human NCAM1 fully rescued memory impairment, suggesting a conserved role of NCAM1 for memory. In parallel, DNA methylation of the NCAM1 promoter in two independent healthy Swiss cohorts was associated with memory performance. In two independent Sub-Saharan populations of conflict zone survivors who had faced severe trauma, DNA methylation at an alternative promoter of the NCAM1 gene was associated with traumatic memories. Our results support a role of NCAM1 in associative memory in nematodes and humans, and might, ultimately, be helpful in elucidating diagnostic markers or suggest novel therapy targets for memory-related disorders, like PTSD

    Phosphorylation of MSI-1 is implicated in the regulation of associative memory in Caenorhabditis elegans

    No full text
    The Musashi family of RNA-binding proteins controls several biological processes including stem cell maintenance, cell division and neural function. Previously, we demonstrated that the C. elegans Musashi ortholog, msi-1, regulates forgetting via translational repression of the Arp2/3 actin-branching complex. However, the mechanisms controlling MSI-1 activity during the regulation of forgetting are currently unknown. Here we investigated the effects of protein phosphorylation on MSI-1 activity. We showed that MSI-1 function is likely controlled by alterations of its activity rather than its expression levels. Furthermore, we found that MSI-1 is phosphorylated and using mass spectrometry we identified MSI-1 phosphorylation at three residues (T18, S19 and S34). CRISPR-based manipulations of MSI-1 phosphorylation sites revealed that phosphorylation is necessary for MSI-1 function in both short- and long-term aversive olfactory associative memory. Thus, our study provides insight into the mechanisms regulating memory-related MSI-1 activity and may facilitate the development of novel therapeutic approaches

    Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures:Tau release from brain slice cultures

    Get PDF
    The spatiotemporal transmission of pathological tau in the brain is characteristic of Alzheimer's disease. Release of both soluble and abnormal tau species from healthy neurons is increased upon stimulation of neuronal activity. It is not yet understood whether the mechanisms controlling soluble tau release from healthy neurons is the same as those involved in the spread of pathological tau species. To begin to understand these events, we have studied tau distribution and release using organotypic brain slice cultures. The slices were cultured from postnatal wild-type and 3xTg-AD mice for up to 1 month. Tau distribution in subcellular compartments was examined by western blotting, and tau release into culture medium was determined using a sensitive sandwich ELISA. We show here that 3xTg-AD cultures have an accelerated development of pathological tau abnormalities including the redistribution of tau to synaptic and membrane compartments. The 3xTg-AD slice cultures show elevated basal tau release relative to total tau when compared with wild-type cultures. However, tau release from 3xTg-AD slices cannot be further stimulated when neuronal activity is increased with potassium chloride. Moreover, we report that there is an increased pool of dephosphorylated membrane-associated tau in conditions where tau release is increased. These data suggest that there may be differential patterns of tau release when using integrated slice culture models of wild-type and transgenic mouse brain, although it will be important to determine the effect of tau overexpression for these findings. These results further increase our knowledge of the molecular mechanisms underlying tau release and propagation in neurodegenerative tauopathies.<br/
    corecore