394 research outputs found

    Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer

    Get PDF
    SummaryReprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.PaperCli

    A multidisciplinary program for achieving lipid goals in chronic hemodialysis patients

    Get PDF
    BACKGROUND: There is little information on how target lipid levels can be achieved in end stage renal disease (ESRD) patients in a systematic, multidisciplinary fashion. METHODS: We retrospectively reviewed a pharmacist-directed hyperlipidemia management program for chronic hemodialysis (HD) patients. All 26 adult patients on chronic HD at a tertiary care medical facility were entered into the program. A clinical pharmacist was responsible for laboratory monitoring, patient counseling, and the initiation and dosage adjustment of an appropriate 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor (statin) using a dosing algorithm and monitoring guidelines. The low-density lipoprotein (LDL) cholesterol goal was ≤ 100 mg/dl. A renal dietitian provided nutrition counseling and the nephrologist was notified of potential or existing drug interactions or adverse drug reactions (ADRs). Patients received a flyer containing lipid panel results to encourage compliance. Data was collected at program initiation and for 6 months thereafter. RESULTS: At the start of the program, 58% of patients were at target LDL cholesterol. At 6 months, 88% had achieved target LDL (p = 0.015). Mean LDL cholesterol decreased from 96 ± 5 to 80 ± 3 mg/dl (p < 0.01), and mean total cholesterol decreased from 170 ± 7 to 151 ± 4 mg/dl (p < 0.01). Fifteen adjustments in drug therapy were made. Eight adverse drug reactions were identified; 2 required drug discontinuation or an alternative agent. Physicians were alerted to 8 potential drug-drug interactions, and appropriate monitoring was performed. CONCLUSIONS: Our findings demonstrate both feasibility and efficacy of a multidisciplinary approach in management of hyperlipidemia in HD patients

    International variation in survival after out-of-hospital cardiac arrest : A validation study of the Utstein template

    Get PDF
    Introduction: Out-of-hospital cardiac arrest (OHCA) survival varies greatly between communities. The Utstein template was developed and promulgated to improve the comparability of OHCA outcome reports, but it has undergone limited empiric validation. We sought to assess how much of the variation in OHCA survival between emergency medical services (EMS) across the globe is explained by differences in the Utstein factors. We also assessed how accurately the Utstein factors predict OHCA survival. Methods: We performed a retrospective analysis of patient-level prospectively collected data from 12 OHCA registries from 12 countries for the period 1 Jan 2006 through 31 Dec 2011. We used generalized linear mixed models to examine the variation in survival between EMS agencies (n = 232). Results: Twelve registries contributed 86,759 cases. Patient arrest characteristics, EMS treatment and patient outcomes varied across registries. Overall survival to hospital discharge was 10% (range, 6% to 22%). Overall survival with Cerebral Performance Category of 1 or 2 (available for 8/12 registries) was 8%(range, 2% to 20%). The area-under-the-curve for the Utstein model was 0.85 (Wald CI: 0.85-0.85). The Utstein factors explained 51% of the EMS agency variation in OHCA survival. Conclusions: The Utstein factors explained 51%. of the variation in survival to hospital discharge among multiple large geographically separate EMS agencies. This suggests that quality improvement and public health efforts should continue to target modifiable Utstein factors to improve OHCA survival. Further study is required to identify the reasons for the variation that is incompletely understood.Peer reviewe

    The Bank of Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used as Visual Stimuli in Cognitive Research

    Get PDF
    There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli

    Orthopaedic management of Hurler’s disease after hematopoietic stem cell transplantation: a systematic review

    Get PDF
    The introduction of hematopoietic stem cell transplantation (HSCT) has significantly improved the life-span of Hurler patients (mucopolysaccharidosis type I-H, MPS I-H). Yet, the musculoskeletal manifestations seem largely unresponsive to HSCT. In order to facilitate evidence based management, the aim of the current study was to give a systematic overview of the orthopaedic complications and motor functioning of Hurler's patients after HSCT. A systematic review was conducted of the medical literature published from January 1981 to June 2010. Two reviewers independently assessed all eligible citations, as identified from the Pubmed and Embase databases. A pre-developed data extraction form was used to systematically collect information on the prevalence of radiological and clinical signs, and on the orthopaedic treatments and outcomes. A total of 32 studies, including 399 patient reports were identified. The most frequent musculoskeletal abnormalities were odontoid hypoplasia (72%), thoracolumbar kyphosis (81%), genu valgum (70%), hip dysplasia (90%) and carpal tunnel syndrome (63%), which were often treated surgically during the first decade of life. The overall complication rate of surgical interventions was 13.5%. Motor functioning was further hampered due to reduced joint mobility, hand dexterity, motor development and longitudinal growth. Stem cell transplantation does not halt the progression of a large range of disabling musculoskeletal abnormalities in Hurler's disease. Although prospective data on the quantification, progression and treatment of these deformities were very limited, early surgical intervention is often advocated. Prospective data collection will be mandatory to achieve better evidence on the effect of treatment strategies

    Modeling allosteric signal propagation using protein structure networks

    Get PDF
    Allosteric communication in proteins can be induced by the binding of effective ligands, mutations or covalent modifications that regulate a site distant from the perturbed region. To understand allosteric regulation, it is important to identify the remote sites that are affected by the perturbation-induced signals and how these allosteric perturbations are transmitted within the protein structure. In this study, by constructing a protein structure network and modeling signal transmission with a Markov random walk, we developed a method to estimate the signal propagation and the resulting effects. In our model, the global perturbation effects from a particular signal initiation site were estimated by calculating the expected visiting time (EVT), which describes the signal-induced effects caused by signal transmission through all possible routes. We hypothesized that the residues with high EVT values play important roles in allosteric signaling. We applied our model to two protein structures as examples, and verified the validity of our model using various types of experimental data. We also found that the hot spots in protein binding interfaces have significantly high EVT values, which suggests that they play roles in mediating signal communication between protein domains

    Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    Get PDF
    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases

    Analysis of Gene Expression in Resynthesized Brassica napus Allopolyploids Using Arabidopsis 70mer Oligo Microarrays

    Get PDF
    Background Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S5:6) alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. Methodology/Principal Findings We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S0:1 and S5:6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent) expression in the allopolyploids were tested. The S5:6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6–15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6–32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S0:1lines and 0.1–0.2% were nonadditive among all S5:6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S5:6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S0:1 lines. Conclusions/Significance Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization. Furthermore, our microarray analysis did not provide strong evidence that homoeologous rearrangements were a determinant of genome-wide nonadditive gene expression. In light of the inherent limitations of the Arabidopsis microarray to measure gene expression in polyploid Brassicas, further studies are warranted
    corecore